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ABSTRACT 

 
 

Neuro-fuzzy Control of a Robotic Arm 
 

(August 1994) 
 

Wallace Eugene Kelly, III, B.S., Texas A&I University 
 

Chairman of Advisory Committee:  Dr. Rajab Challoo 
 
 

This thesis first outlines the theory, historical background, and application of neural 

networks and fuzzy logic.   The review of neural networks and fuzzy logic is followed by 

a discussion of the combination of the two technologies -- neuro-fuzzy techniques. The 

two tools have been successfully combined to maximize their individual strengths and 

compensate for shortcomings.  A survey is given of previous work done in applying these 

technologies to control systems. 

The problem of moving a robotic arm in the presence of an obstacle is discussed.  In 

particular, trajectory planning of a planar, redundant manipulator is studied.  The primary 

weakness of previous methods for determining acceptable trajectories is the massive 

amount of computer time needed to obtain a solution.  Neuro-fuzzy systems offer not 

only the benefit of the parallel nature of its computations, but also the ability to learn the 

control of an arm by following a human's example. 

Several neuro-fuzzy controllers are trained using sample data obtained from a 

human's control of a robotic arm.  Their performance is quantified and compared.  It is 

shown that the definition of the fuzzy membership functions plays a significant role in the 

ability of the neuro-fuzzy controller to learn and generalize.  Possible directions for future 

work are suggested. 
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CHAPTER I 

INTRODUCTION 

The problem addressed in this thesis is that of moving a robotic arm in the presence 

of an obstacle.  For robots to become effectively used in a wide range of applications, 

they must gain the ability to work in unpredictable and changing environments.  Robots 

used in space exploration and construction will have to sense their environment and carry 

out their tasks regardless of the presence of objects in the work area.  The ability to move 

an arm around an obstacle and to a goal is an intuitive skill for human beings.  

Translating that skill into instructions for a robotic arm, however, is not an easy task. 

The ability of a machine to emulate human behavior has always been the goal of 

artificial intelligence.  Neural networks and fuzzy logic systems are two of the most 

important results of research in the area of artificial intelligence.  They have been 

effectively applied to everything from voice and image recognition to toasters and 

automobile transmissions.  Neural networks are best known for their learning capabilities.  

Fuzzy logic is a method of using human skills and thinking processes in a machine. 

While neural networks and fuzzy logic have added a new dimension to many 

engineering fields of study, their weaknesses have not been overlooked.  In many 

applications, the training of a neural network requires millions of iterative calculations.  

Sometimes the network can not adequately learn the desired function.  Fuzzy logic 

systems, on the other hand, acquire their knowledge from an expert who encodes his 

knowledge in a series of IF/THEN rules.  Fuzzy logic systems are easy to understand 

because they mimic human thinking. The problem arises when systems have many inputs 

and outputs.  Obtaining a rule base for large systems is difficult, if not impossible. 

Prompted by the weaknesses inherent in the two technologies and their 

complementary strengths, researchers have looked at ways of combining neural networks 

                                                
This thesis follows the style and format of the IEEE Transactions on Control Systems Technology. 
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and fuzzy logic.  Due to the relative youth of this field of study, a consensus on the best 

way to utilize their individual strengths and compensate for their individual shortcomings 

has not yet been established.  Consequently, research into neuro-fuzzy systems branches 

in many directions.  The technique used in this work replaces the rule-base of a 

traditional fuzzy logic system with a back propagation neural network. 

Using neuro-fuzzy techniques, a robotic arm can be trained to plan its movements to 

avoid a collision with obstacles in its vicinity.
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CHAPTER II 

  NEURAL NETWORKS 

"A neural network is a dynamical system with the topology of a directed 
graph that can carry out information processing by means of its state 

response to continuous or episodic input." -- Robert Hecht-Nielsen [9] 
 

The attitudes of researchers toward neural networks have experienced an evolution 

since their inception in the early 1940s. According to Leon Cooper, these attitudes 

"progressed from skepticism through romanticism to what we have at present: general 

realistic acceptance of neural networks as the preferred -- most efficient, most economic -

- solution to certain classes of problems" [7]. 

Neural networks are composed solely of two elements -- processing elements and 

interconnections.  The processing elements are called neurons and the connections are 

termed synapses.  A processing element generally has many inputs and a single output as 

shown in figure 2-1.  The neural network performance is governed by the architecture of 

the processing element's interconnection, the transfer functions for the processing 

elements, and the learning law [3].  There are two popular models of neural networks -- 

the feed-forward model and the feedback model [25].   
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Figure 2-1.  An artificial neuron. 
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The feed-forward model, as illustrated in figure 2-2, is composed of layers where the 

output from each level is the input for the next level.  Input is applied to the input layer.  

The signals go to the hidden layers and then out to the output layer.  Its operation is 

similar to the operation of a combinational logic circuit.  Feed-forward neural networks 

work well for "natural" problems such as pattern recognition [25]. 

X
1

X
2

X
3

Y
1

Y
2

Y
3

 

Figure 2-2.  A feed-forward neural network. 

Figure 2-3 illustrates the feedback model, which has connections between different 

levels, forward and backward.  This is more like an asynchronous logic circuit in which 

the nodes evolve to a final state.  Optimization problems (like the Traveling Salesman 

problem) are best implemented on feedback neural nets [25]. 
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Figure 2-3.  A feedback neural network. 
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Each input to a neuron has an associated weight.   If the sum of all the weighted 

inputs is above a certain threshold, the neuron's output is triggered.  An input that tends to 

lower the weighted sum (probably because of a negative weight) is inhibitory.  Excitatory 

inputs increase the weighted sum.  It is useful to consider the inputs, (x1, x2, ... xN) and 

the weights (w1, w2, ... wN) to be vectors X and W [3].  The output is then the dot 

product of the two vectors.  This can give us a visual image of what goes on in a neural 

network.  Consider the weight vector to be pointing in a direction in space.  An X vector 

will produce a large dot product if that X vector points in the same direction as the W 

vector.  Imagining the system in this way leads to the development of a neural network of 

grandmother cells. 

In a neural network of grandmother cells, each cell has its weight vector set to a 

pattern which that cell is responsible for identifying [3].  For n patterns, n grandmother 

cells are needed.  Unknown input is entered into all the grandmother cells.  The one that 

has the highest value on the output has weights closest to the input.  This is a very simple 

neural network.  There is no learning involved. 

Most neural network applications involve training.  Training a neural network to 

provide the desired outputs can be either supervised or graded training [25].  Supervised 

training provides the input and the desired output to the network.  Graded training 

provides the training input and a grade telling the network how close its output is to the 

desired output.  The weights of the neuron inputs are adjusted during the learning process 

according to a learning law.  An example of supervised learning is the Delta rule or Least 

Mean Squared training law, developed by Bernard Widrow and Ted Hoff [4]. 

To implement the LMS training law, the processing elements must be modified to 

provide the ability to compare its own output to the desired output.  The input to the 

neuron that supplies the desired output is called the mentor input.  For LMS training the 

weights are modified according to equation 1 [4]. 
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 W W X
X

y ynew old desired actual= + −β 2( ) (1) 

where W is the weight vector for a processing element 

 X is the input vector 

 β is a programmer defined constant between 0 and 1 

 y are the desired and actual outputs (scalar) 

 

The value of β determines how fast the weighting matrices converge to the point of 

the minimum least square error.  The larger β, the faster the learning curve should reach 

its final destination.  If the training data is noisy, however, a large learning constant may 

prolong the training time.  The "path" followed to the least squared error point is the 

negative gradient of the error hyperparabola.  Therefore, the learning should always take 

the most efficient route to minimum error [4]. 

Once trained the network must be tested.  If the network produces unacceptable 

results, there are several options.  First, try more training.  If that does not work, 

reevaluate the learning law and any programmed constants.  Make sure that the training 

data is similar to the test data.  Examine the architecture of the network.  Are more nodes 

required?  more layers?  Is the coding scheme used for the input information adequate? 

By far the most popular training method is supervised back propagation.  A back 

propagation neural network consists of at least three layers.  The input layer accepts the 

input from the outside world.  Therefore, the number of nodes in the input layer is equal 

to the number of inputs.  The output layer produces the result and must also have an 

appropriate number of nodes.  The middle layers are sometimes called hidden layers. 

Although there is no way to determine what is the best number of hidden nodes, there 

are some general rules of thumb.  If there are too many neurons in the hidden layer,  the 

network will have the tendency to memorize the input patterns rather than generalize the 

input into features.  If on the other hand, the middle layer contains too few neurons, the 
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accuracy of recall will decrease and the number of iterations required for training will 

increase significantly [5]. 

Before training begins, all the neuron weights are set to random numbers.  Then, the 

inputs are fed to the neural network, a summation is carried out in each layer, and the 

results of each layer are passed as the input to the next layer.  The summation is shown in 

equation 2. 

 I f w xi i
i

= ∑( ( * )) (2) 

where i is the input index 

 w is the weight of that input 

 x is the input signal 

 f(x) is the activation function 

 

The activation function, f(x), determines the activity, or excitation level, generated in 

the neuron as a result of the magnitude of the input.  "For a back propagation network, 

this function should be sigmoidal; that is, it must be continuous, S-shaped, monotonically 

increasing, and asymptotically approaching fixed values as the input approaches plus or 

minus infinity" [5].  If the neural network is used as a classifier, we must assume +1 or 0 

values above and below a certain threshold on the output layer.  Equation 3 and figure 2-

4 is an example of such a function. 

 f x
e x( ) =

+ −

1
1

(3) 
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Figure 2-4.  The graph of a sample activation function. 

The delta rule can be used to adjust the weights of a back propagation neural network.  

The delta rule is based on minimizing the error.  It is easy to apply to the output layer 

because we know the input and the desired output.  However, there is no way for us to 

know what the desired output is in middle layers.  Middle layers require a determination 

of their error based on the layer receiving their outputs.  The term back propagation refers 

to the way that the error calculation is back propagated from the output to the input.  The 

error is calculated with equations 4 and 5. 

 e f I w Ei ij j
j

= ′ ∑( )* ( * ) (4) 

 ′ ≈ −f x f x f x( ) ( )( ( ))1  (5) 
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where i refers to a particular node in the middle layer 

 j refers to the nodes in the following layer 

 ei is the error of a middle layer node 

 Ej is the error in the nodes of the following layer 

 wij is the weight between node i and j 

 f(x) is the activation function 

 

The derivative term contributes to stability and helps prevent excessive blame being 

attached to the middle layer nodes.  The training of a BPN therefore requires two passes 

through the network -- once forward, once backward.  Because of this, BPNs are usually 

trained off-line to determine the weights.  Once trained, the network can operate at much 

faster speeds. 

The primary benefit of using a neural network is that the system "learns."  Another 

benefit is that a problem does not have to be well understood before applying a neural 

network solution.  The speed of computation (if many parallel processors act as the 

neurons) is a potential benefit as hardware implementation of neural networks improves.  

Finally, there is a better fault tolerance in parallel computer architecture than in the 

traditional von Neuman architecture  [25]. 

Neural networks have their problems too.  Neural nets are not good at precise 

mathematical computation.  Therefore, neurocomputing will not replace algorithmic 

computing.  The two have different, but complementary strengths.  Artificial neural 

networks often require a huge number of iterations for training.  They are not guaranteed 

to find the correct answer2.  They may get stuck in a local minimum of the error versus 

possible weights curve.  Most researchers agree that the starting point vector is as 

important as the other aspects of the network [7].  One way to help guard against the local 

                                                
2It has been proven that for any set of input and desired outputs, a neural network exists that can exactly 
map the input to the output [5].  The problem is finding the correct weights and an efficient architecture. 
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minimum problem is to include a momentum term in the Delta rule.  Equation 6 adds a 

momentum term to the delta rule of equation 1. 

 W W E X
X

W Wnew old new old prev= + + −β α2 ( )  (6) 

where W is the weight vector for a processing element 

 X is the input vector 

 β is a programmer defined constant between 0 and 1 

 y are the desired and actual outputs (scalar) 

 α determines how much weight to put on momentum 
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CHAPTER III 

 FUZZY LOGIC 

"If fuzziness is a genuine type of uncertainty, if fuzziness exists, the 
physical consequences are universal, and the sociological consequence is 
startling:  Scientists, especially physicists, have overlooked an entire mode 

of reality." -- Bart Kosko [14] 
 

Fuzzy logic has its roots in the work of renegade mathematicians who saw the value 

of a multivalent logic system.  The credit for fuzzy logic's application to the areas of 

control and in engineering belongs solely to Lotfi Zadeh.  In 1965, he formalized fuzzy 

set theory [27] and in 1973 brought fuzzy set theory into the context of control systems 

[28].  According to Lotfi Zadeh, fuzzy logic brings to control systems a "higher machine 

intelligence quotient" [6]. 

On a mathematical level, fuzzy logic abandons the strict bivalent logic of TRUE and 

FALSE, ONE and ZERO, ON and OFF.  Fuzzy logic allows for half-truths.  Take for an 

example the scientific classification of a whale.  We are taught in grade school, much to 

our surprise, that a whale is a mammal.  A whale is a mammal because, among other 

reasons, it is warm blooded, gives birth to live baby whales, feeds those young with milk, 

and also grows hair (or so we are told).  This classification system is a perfect example of 

the traditional bivalent logic that has dominated science for centuries.  Despite the fact 

that it looks like a fish, it swims like a fish, it smells like a fish, and every third grader in 

the country is skeptical when told that it is not a fish, the whale is 100% mammal, 0% 

fish.  If a fuzzy logician were classifying the whale, he would allow the whale to belong 

to both the mammal set and the fish set, to certain degrees. 

On an engineering level, fuzzy logic provides a platform for easily encoding human 

knowledge into the control of a system.  It has been used in an increasing number of 

applications, especially in Japan.  The Sendai railway in Japan is controlled by fuzzy 

logic controllers.  Applications have been developed in tracking problems, tuning, 
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interpolation, classification, handwriting, voice recognition, image stabilization in video 

cameras, washing machines, vacuum cleaners, air conditioners, electric fans, hot plates, 

and Lexus automatic transmissions.  An inverted pendulum experiment was demonstrated 

in 1987 that "produced balancing responses nearly 100 times shorter than those of 

conventional PID controller" [26]. 

Fuzzy logic is a method of characterizing knowledge in terms of fuzzy sets and a rule 

base.  A fuzzy system has one or more inputs that are fuzzified, a rule base that is 

evaluated according to the inputs, and one or more outputs that are defuzzified into 

"crisp" values.  A fuzzy system structure is illustrated in figure 3-1.  Bringing fuzzy logic 

to control problems is a way to use a human expert's knowledge about an analog process 

in a digital computer.  Fuzzy logic is not always the best way to solve a control problem, 

but it offers several advantages. 

.

.

.

.

Fuzzifier 1

Fuzzifier 2

Fuzzifier M

x(1)

x(2)

x(M)

Fuzzy Rule Base

.

..

.

..

.

..

Degrees of
Membership

.

..

.

..

.

..

.

.

.

.

Defuzzifier 1

Defuzzifier 2

Defuzzifier N

y(1)

y(2)

y(N)

Degrees of
Membership

 

Figure 3-1.  A typical fuzzy system. 

Fuzzy sets are values to which a variable can belong.  Fuzzy control involves 

describing the control procedure in terms of subjective descriptions like "very low", 
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"low", "just right", "high", and "very high".  Suppose a human were to describe the 

operation of an elevator.  If the elevator did not stop exactly on the desired floor, he 

might describe the elevator's error in terms of a fuzzy variable like the one above.  If the 

elevator stopped three feet too high, the position of the elevator would definitely be "very 

high".  Six inches too high might just be "high."  The question is, "At what height did the 

elevator go from just being 'high' to being 'very high'?"  Fuzzy logic avoids this problem 

by its multivalent nature.  A fuzzy variable can have a certain degree of membership to 

"high" and a degree of membership to "very high."  Often times these fuzzy sets are 

graphed as shown in figure 3-2. 

Figure 3-2.  A sample fuzzy set. 

The control rules are defined with these fuzzy sets.  These control rules are usually in 

the form of IF/THEN statements.  "If ERROR is VERY HIGH, then VOLTAGE is 

NEGATIVE LARGE." or "If ERROR is VERY LOW and LOAD is VERY HIGH, then 
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MOTOR POWER is POSITIVE LARGE."  Combining several if-conditions necessitates 

the use of fuzzy logic operations.  Zadeh defines these basic operations in equations 7, 8, 

and 9. 

  A B A B∩ = min( , ) (7) 

  A B A B∪ = max( , ) (8) 

  ′ = −A A1  (9) 

 

Suppose a rule in the rule base stated, "If ERROR is VERY HIGH and LOAD is 

ZERO, MOTOR POWER is NEGATIVE SMALL."  Consider for an example that the 

elevator was located a distance of 1.5 feet above the desired floor.  The distance of 1.5 

feet might have a 0.4 degree of membership in ERROR's fuzzy value VERY HIGH.  The 

weight of a child in the elevator might cause a 0.5 degree of membership in LOAD's 

fuzzy value ZERO.  According to equation 7, the rule's antecedent "if ... and ..." would 

evaluate as min (0.4, 0.5) = 0.4.  Therefore, in determining the control, the output 

variable would have a 0.4 degree of membership in MOTOR POWER's fuzzy value of 

NEGATIVE SMALL.  Usually, an output of a fuzzy system is determined by more than 

one rule and the total output is calculated according to the centroid of the output 

membership functions. 

Sometimes a fuzzy variable has a degree of membership to a fuzzy value of 0.5.  "The 

elevator is not quite low enough to qualify as 'high', but it isn't 'very high' either."  For the 

special case of A = 0.5, equation 9 evalutates as (not A)=A.  This contradicts traditional, 

bivalent logic.  Notice, however, that traditional zero-or-one logic is a special case of 

fuzzy logic.  If the state space is considered to be a hyperspace cube, whose axes 
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correspond to individual fuzzy variables, traditional logic holds true for the corners of the 

cube.  Fuzzy logic applies to all points in the state space [14]. 

When is fuzzy logic appropriate?  Fuzzy logic is helpful in situations where the 

control variables are continuous.  Fuzzy rules often take the place of a math model.  

Therefore, fuzzy logic is useful if a mathematical model of a process does not exist, is too 

difficult to encode, is too complex to be evaluated in real-time, or requires too much 

memory.  Other situations that may make fuzzy control advantageous are when there are 

high ambient noise levels, it is important to use inexpensive sensors, or it is important to 

use low precision microcontrollers [6].  They are easier to prototype and implement and  

simpler to describe and verify.  They can be maintained and extended with greater 

accuracy in less time. 

What are the weaknesses of fuzzy logic control?  One problem is that the control of 

some systems can not be easily specified in terms of an IF/THEN rule base.  An example 

of such a system would be a robotic arm operating in the presence of an obstacle.  Also, 

sometimes the 'experts' providing the rule base disagree among themselves.  This was 

demonstrated at the Kawasaki Steel Corporation in Japan [29].  A fuzzy logic control 

system was installed to help operators make decisions regarding control of a blast 

furnace.  The researchers summarized, "There is a slight difference in knowledge 

between a multiple number of experts...  In the case of expert systems which process ill-

structured problems, an 100% success could not be possible."  Their data suggests that in 

practice, the operators ignored the expert system's suggestion over 15% of the time. 
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CHAPTER IV 

NEURO-FUZZY SYSTEMS 

"Integration combines separate entities into a whole more useful than any 
of its individual parts." -- David V. Hillman [10] 

 

Recently, the combination of neural networks and fuzzy logic has received attention.  

The idea is to lose the disadvantages of the two and gain the advantages of both.  Neural 

networks bring into this union the ability to learn.  Fuzzy logic brings into this union a 

model of the system based on membership functions and a rule base. 

This field of study is still in its infancy.  Universally accepted techniques and a 

general consensus on the direction of research have not yet been established.  Most of the 

work done in this area is still associated with individual researchers and has not been 

adopted as standard strategy.  Therefore, much of the discussion of neuro-fuzzy 

techniques has been reserved for Chapter V in which previous work of other researchers 

is presented.  What follows is a brief overview of the major approaches in neuro-fuzzy 

research. 

Determining the fuzzy membership functions from sample data using a neural 

network is the most obvious method of using the two together.  The definition of the 

membership function has a huge impact on the system response.  Often, the programmer 

must use trial and error to find acceptable values.  Assuming a certain shape and finding 

the beginning and endpoints for the fuzzy values in a fuzzy set is a neural network 

optimization problem [18].  Figure 4-1 is a diagram of such a system. 
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Figure 4-1.  A fuzzy system whose membership functions are adjusted by a neural 
network. 

Figure 4-2 shows a more complex integration -- the use of  neural networks to 

determine both the fuzzy membership functions and the rule base.  National 

Semiconductor scientists have developed a system that converts input and output data 

into nonlinear membership functions and a rule base [12].  The nonlinearity of the 

membership functions is unique to membership functions derived by neural networks.  

They help minimize the number of rules. 

Neural Network

Fuzzy Rule
Base

Fuzzifier Defuzzifier

Input Output

 

Figure 4-2.  A fuzzy system defined by a neural network. 

Another approach is to incorporate fuzzy logic into the neurons of the neural 

networks.  This approached developed because of the original neuron model proposed by 

McCulloch and Pitts [30].  The McCulloch-Pitts cell produced an all-or-none output.  It 

was quickly realized that neurons with output in the range of [0,1] produced much better 
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results.  The concept of a fuzzy neuron, however, has advanced beyond simply expanding 

the range of outputs on a crisp neuron.  Some researchers have incorporated membership 

functions and rule bases into the individual neurons, as shown in figure 4-3. 
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Figure 4-3.  A neural network of fuzzy neurons. 

Finally, the idea of fuzzification of control variables into degrees of membership in 

fuzzy sets has been integrated into neural networks.  See figure 4-4.  If the inputs and 

outputs of a neural network are fuzzified and defuzzified, significant improvements in the 

training time, in the ability to generalize, and in the ability to find minimizing weights 

can be realized.  Also, the membership function definition gives the designer more 

control over the neural network inputs and outputs.  It is this technique that is 

implemented in this thesis for the control of a robotic arm in the presence of an obstacle. 
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Figure 4-4.  A fuzzy system with neural network rule base. 
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CHAPTER V 

BACKGROUND 

The use of neural networks, fuzzy logic and neuro-fuzzy technology in control has 

progressed in that order.  Neural networks and fuzzy logic, used independently, have both 

demonstrated their value in control systems.  More recently, neuro-fuzzy control has 

brought even more improvement to the quality of intelligent control.  The following is a 

survey of the research done in the areas of intelligent control, followed by a survey of 

trajectory planning techniques. 

NEURAL NETWORKS 

Guez, Eilbert, and Kam propose an architecture for neural network control that can 

serve as an adaptive control system [8].  A comparison is made to traditional model 

reference adaptive control (MRAC).  In their example of a robotic manipulator, the 

neural network approach shows significant improvement in performance over the 

MRAC.  The neuro-controller is more general, making it possible to be trained for many 

problems.  It shows the most improvement over MRAC as the system increased in order.  

It is also more stable and less sensitive to plant dynamics. 

Psaltis, Sideris, and Yamamura address the problem of training a neurocontroller over 

a large state space [23].  They suggest training the neural net in two modes -- generalized 

training and specialized training.  The generalized training session extracts the major 

features.  The specialized training works to define detailed boundaries between samples.  

This decreases the iterations necessary to train the neuro-controller and provides better 

response in important operating regions. 

Nguyen and Widrow use two neural networks to control a truck and trailer as it backs 

up to a dock from any initial position [20].  The first neural network, called an emulator, 
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learns to identify the system's dynamic characteristics.  The second provides the actual 

control.  After 20,000 simulated backups, the controller is able to move the truck to 

within 3% of the desired position.  The network also develops a control strategy, as 

demonstrated by the fact that initial moves sometimes increase the current error in order 

to prepare the truck and trailer for ultimate success. 

Newton and Xu outline the work being done at Carnegie Mellon University in the 

area of neural network control of a robotic arm [50].  A seven degree-of-freedom space 

manipulator is controlled with a neural network resulting in 85% less trajectory error than 

recorded under PID control.  The neural network is trained on-line and made use of a 

moving average feedback.  The feedback provides the network with the ability to plan 

current control based on both the current input and the recent response of the network to 

past inputs. 

Arai, Rong, and Fukuda use neural networks to control a three link robotic arm that is 

manipulating a flexible plate [51].  The problem is complicated by the fact that the 

control must take into account not only the trajectory planning, but also the vibration of 

the flexible material being held.  Four neural networks are used to learn the error caused 

by the vibrations of the flexible plate.  The networks have 4, 10, and 1 nodes in the input, 

hidden and output layers, respectively.  After training, the model of the system's error, 

contained in the neural networks, is used to improve control.   

Liu and Asada describe a neural network control of a deburring robot [52].  Initially, 

a neural network is trained off-line to data obtained by recording a human's control of the 

robot.  This training data teaches general control strategy and task planning.  The final 

control system also makes neural network adjustments on-line based on data acquired 

during operation.  This training fine tunes precise controlled motion.  Because of this 

second learning capability, the neural network controller was able to exceed the 

performance of the human controller. 
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T. C. Hsia and Z. Mao propose a scheme for obstacle avoidance of redundant 

manipulators by neural network [53].  Their scheme, called q-system, translates a desired 

Cartesian coordinate position, Xd, into four joint angles, q.  The training samples are 

taken from known solutions given by the forward kinematics solution.  In this manner, a 

neural network was trained for the inverse kinematics solution of a four-link arm.  The 

system is improved by performing a coordinate transformation of q, which localizes the 

search for an inverse solution. 

Cooperstock and Milios incorporate neural network control into a vision guided 

robotic arm [54].  Neural networks take the place of complex numerical solution 

techniques for both the solution of the inverse kinematics of the arm and for the solution 

of the perspective projection of the stereo vision system.  Cooperstock and Milios's 

controller is comprised of five neural networks.  The networks specialize in the 

operations of approaching, centering, paralleling, reaching, and adjusting.  The 

researchers describe their control system as being competitive with traditional systems. 

Yegerlehner and Meckl utilize the learning capabilities of neural networks to adapt 

the control of a robot experiencing large changes in payload weight [55].  One neural 

network is trained for the inverse kinematics, while another is trained to estimate the 

mass of the payload.  The authors reveal that the artificial neural network did not model 

the inverse kinematics as well as a comparison model of least squares fitting parameters.  

They point to the fact that the network inputs were only the joint angles and their two 

time derivatives.  They suggest that a "richer set of inputs" would be necessary for 

improving performance. 
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FUZZY LOGIC 

Li and Lau look at the application of fuzzy algorithms to servo system control [16].  

They see the challenge of servo control lying in the accuracy and speed requirements.  In 

comparing fuzzy control, PI control, and MRAC, they conclude that the fuzzy control is 

better than PI control and as good as MRAC.  The authors note that their fuzzy controller 

could only offer an optimum solution to a narrow range of inputs. 

Neffenger concludes that the value of fuzzy motor control is in the fact that a math 

model of the system is not needed [19].  A position control experiment is performed 

using a variable speed AC motor.  Neffenger varied the mass of the object being 

controlled without the fuzzy system being affected.  A change in system parameters is a 

drawback for model based control.  The experiment demonstrates that a fuzzy controller 

can yield sufficient responses as parameters in the system change.  Also, Neffenger 

points to the short design time required for fuzzy systems.   

Kosko introduces the concept of FAM -- fuzzy associative memory [14].  It is based 

on his view of fuzzy state space as a hyperbolic unit cube.  FAMs map input "balls" to 

output "balls".  The balls are clusters of data in the state space associated with certain 

conditions.  Adaptive fuzzy associative memories, AFAM, change over time as new data 

is sampled and processed. 

Kosko uses his FAM concept to build on the work of Nguyen and Widrow by 

designing a fuzzy truck backer-upper [14].  His fuzzy controller consistently chose a 

smooth path to its final destination.  Kosko points to the fact that Nguyen and Widrow's 

neural controller did not always converge.  He also points out that the fuzzy controller did 

not require 20,000 iterations for training.  Training was achieved by encoding "common 

sense" FAM rules. 

Kong and Kosko extend Kosko's own fuzzy controller for a truck and trailer by 

implementing an adaptive fuzzy controller [13].  In adaptive FAM, the rules are inferred 
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from sample data using differential competitive learning (DCL) clustering.  The rule 

inference for the AFAM was much faster than the training required for neural net weight 

adjustments.  The researchers suggest that their fuzzy controller is robust, as 

demonstrated by the fact that up to 50% of the control rules could be removed without a 

significant deterioration in performance. 

Pacini and Kosko compare the use of AFAM and Kalman-filter for real-time target 

tracking [21].  The comparison shows that AFAM could track as well as a Kalman filter, 

but not better than.  Again, DCL is used to cluster sample data into rules.  The rules that 

were generated from the sample data produced nearly exactly the same results as the 

human rule base. 

Berenji, Chen, Lee, Murugesan, and Jang perform experiments with fuzzy control and 

a cart-pole balancing problem [2].  In their comparison of the fuzzy logic controller and a 

state-feedback controller, the fuzzy logic controller scored high marks in the areas of ease 

of implementation, robustness and percentage overshoot.  The state feedback controller 

had better settling times and ease of modification.  They felt that the largest limitation of 

the fuzzy method is in the calibration of the membership functions.  They suggest 

research in the area of "automatic learning of approximate control rules." 

Shao addresses one of the problems associated with fuzzy systems -- sometimes the 

rule base is difficult to define.  He presents a method for developing fuzzy systems that 

adjust their rule base to conform to predetermined system requirements.  The strength of 

his approach lies in its application to nonlinear systems and systems with a large time lag.  

Shao applies his technique to the control of both a boiler and a DC motor. 

Qioa, Wang, Heng, and Shan design a Rule Self-regulating Fuzzy Controller (RSFC) 

[42].  They are interested in adjusting a fuzzy rule base on-line in real-time.  In order to 

give the system the ability to quickly modify the fuzzy controller's rule base, the authors 

use a special type of rule base which is more easily modified.  The example given is that 
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of a fuzzy logic controller adjusting the proportional and integral gain constants in a 

simple feedback control system. 

Bagchi and Hatwal use fuzzy logic to plan the path of an object moving in the 

presence of obstacles [48].  The researchers justify the use of fuzzy logic for two reasons 

-- ease of design and the ability of a fuzzy system to work with inaccurate sensors.  First, 

appropriate fuzzy variables and values are chosen.  The researchers develop a collision 

avoidance strategy and encoded that strategy into a simple rule base.  A simulation is 

performed with five objects moving in a plane. 

Jou and Wang present their work in the area of adaptive fuzzy logic systems [56].  

Error back propagation is applied to a fuzzy logic system to adjust the rule base 

according to a pre-specified training set.  The specific application addressed is that of 

backing up a truck to a dock.  The researcher's system performed as well as the neural 

network controller of Nguyen and Widrow [20], but required far fewer training sessions.  

They note that in order to develop a rule base capable of generalization, training samples 

that are "homogeneously distributed throughout the entire state space" are necessary. 

NEURO-FUZZY TECHNOLOGY 

Nauck, Klawonn, and Kruse research the fusing of neural networks and fuzzy systems 

in an attempt to overcome the disadvantages expressed by other researchers using only 

one of the technologies [18].  Their inverted pendulum application is similar to Berenji's, 

et al. [2].  The researchers' "neural network oriented fuzzy control" system adjusts its 

fuzzy set definitions.  The application of this system to an inverted pendulum was able to 

balance the pendulum and reduce the rules required from 512 to fewer than 40.  Not only 

did learning take place, as in a neural network, but the resulting system was defined in the 

linguistic variables. 
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Similarly, Jang designs a self-learning fuzzy controller based on temporal back 

propagation [11].  The current state of the system is compared to the desired state and the 

error is back propagated through the system to adjust individual fuzzy parameters.  Tests 

on an inverted pendulum show that significant adjustments were made on membership 

function definitions.  The trained system exhibited robustness and fault tolerance. 

Archer and Wang propose a method for using neural networks to define membership 

functions [34].  Their algorithm incorporates what they term as a Fuzzy Membership 

Model.  Neural networks are used to learn how to classify patterns that fall near regions 

of uncertainty in pattern space.  In their example, one neural network is used to learn the 

sharp boundary between two classes, while two other neural networks are trained to 

determine a pattern's fuzzy membership in a particular class. 

Berenji and Khedkar also use neural networks to define fuzzy membership functions 

[41].  They emphasize the importance of selecting the correct granularity for describing 

the values of each linguistic variable.  Berenji and Khedkar implement a generalized 

approximate-reasoning-based intelligent control (GARIC).  One neural network is used 

to evaluate the performance of the fuzzy system.  One neural network is used to adjust 

the membership function based on the evaluation network's output.  Simulations for the 

classical cart-pole balancing problem are performed. 

Blanco and Delgado present their work in the area of neuro-fuzzy techniques [36].  

They suggest that a neural network's strength lies in its ability to approximate a function 

from sample data.  The parallel in fuzzy system applications would be the need to infer 

an output from a predefined rule base.  Blanco and Delgado suggest training neural 

networks to the knowledge contained in a fuzzy rule base.  The neural networks can then 

be used in the place of a rule base. 

Keller, Yager and Tahani justify this approach by pointing to the fact that in fuzzy 

logic systems "as the number of antecedents' clauses increases, the storage and the 

computation in the inference process grow exponentially" [43, 44].  Their research 
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indicates that for complex systems, a fuzzy rule base is more efficiently stored in a neural 

network.  Also, due to the parallel nature of a neural network, the inference procedure 

would require less time in a parallel implementation. 

Pedrycz takes a similar approach to combining neural networks and fuzzy logic [39].  

His approach, however, does not involve training a generic neural network to emulate a 

rule base.  He introduces two new classes of fuzzy neurons.  The aggregative neurons 

realize AND, OR, and mixed AND/OR operations.  The referential neurons realize binary 

relations of matching, difference, inclusion and dominance.   The fuzzy rule base is 

"encoded" into a neural network by appropriate architecture design and weight selection 

using these two types of fuzzy neurons. 

Pal and Mitra adapt neural networks to include fuzzy inputs and outputs [40].  In their 

combination of the two technologies, each input is first fuzzified according to the input 

membership functions.  The desired outputs are also fuzzified in order to perform the 

back propagation during training.  The resulting network produces fuzzy membership 

values for a given input.  Pal and Mitra compared their neuro-fuzzy system of classifying 

vowel sounds to conventional speech recognition systems. 

Rahman outlines his use of neuro-fuzzy technology in a practical, home appliance 

problem [24].  The problem is that a toaster's darkness setting does not take into account 

the initial temperature of the toaster.  Rahman equips a toaster with a temperature sensor 

and microcontroller.  The temperature is read by an eight bit microcontroller that controls 

the toaster coils.  Data was collected off-line and used by a neural network to derive 52 

rules and 3 membership functions.  After training, the toaster produced toast with almost 

identical degrees of darkness regardless of the initial temperature of the toaster.   

Altrock and Krause have researched neuro-fuzzy technology in embedded automotive 

control [1].  A 600 rule fuzzy control system was implemented in a 20 inch model and in 

a full size sedan to provide an anti-skid steering system.  Due to the large number of rules 

and the real-time demands of such a system, the authors used the Gamma aggregational 
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operator and FAM inference.  Through a serial link to a PC, a neural network was able to 

optimize parameters during operation. 

Lea, Jani, and Berenji explore the use of neuro-fuzzy control for space shuttle 

rendezvous and docking [15].  An architecture composed of two networks is used.  The 

two networks are referred to as the evaluation network and the action network.  The 

evaluation network is a multilayer back propagation neural network dedicated to the "if" 

side of a fuzzy rule base.  Similarly, the action network is dedicated to the "then" side of 

the rule base. 

S. C. Lee and E. T. Lee introduce the fuzzy neuron [38].  The fuzzy neuron 

incorporates fuzzy logic into the neurons of the neural networks.  Their approach is based 

on the fact that the original neuron model proposed by McCulloch and Pitts produced an 

all-or-none output [30].  It was quickly realized that neurons with output in the range of 

[0,1] produced much better results.  The authors say that their fuzzy neurons are best used 

in areas of "soft sciences, such as in prediction making, pattern recognition, and decision 

making processes."  The examples presented are all feedback neural networks, which are 

best suited for that type of problem. 

Pedrycz successfully trained a fuzzy-neuron neural network to control a system with 

two state variables and two control variables [22].  His approach attaches linguistic terms 

in the place of numeric weights between the individual processing elements.  This makes 

it easier to interpret what goes on in the network.  Pedrycz also points out that fuzzy-

neuron controllers make it easier to understand and adjust the trade-off between 

information granularity and learning capabilities. 

Keller and Hunt address the problem of a neural network classifier's inability to 

terminate training when training samples from two classes are nonseparable [37].  They 

suggest that training samples that are nonseparable are probably atypical of their 

respective class.  Fuzzy techniques can be incorporated into the perceptron model to put 

less weight on these atypical samples during training.  The researchers respond to the 
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rhetorical question, "Why not just identify the atypical vectors and ignore them?"  By 

making a sample vector's influence during training dependent on how closely it 

represents its class, the boundaries between the classes can be better characterized than if 

atypical vectors are ignored. 

TRAJECTORY PLANNING 

W. J. Chung, W. K. Chung, and Y. Youm introduce a method for dealing with the 

problems of inverse kinematics in robotic manipulators with redundant degrees of 

freedom [33].  They propose the use of virtual links and displacement distribution.  The 

virtual link scheme divides a redundant manipulator into a series of two or three link 

manipulators.  The displacement distribution assists in planning movements by assigning 

responsibility for the end-effector's position to each joint.  The researcher's simulate their 

algorithm for planar arms with as many as 10 degrees of freedom. 

Paredis and Khosla also address the problem of solving inverse kinematics equations 

in redundant manipulators [47].  They suggest, however, a numerical approach for 

obtaining a solution.  A system of inequalities and an objective equation describing the 

robotic arm's task is determined.  Then the objective equation is optimized by the 

simulated annealing technique to iteratively solve for the arm's joint angles.  The 

researcher's numerical solution for a two DOF serial link manipulator agrees with the 

analytical solution. 

Lumelsky applies his dynamic path planning (DPP) approach to various types of two 

joint robotic arms operating in the presence of obstacles [31].  His non-heuristic approach 

is based on transforming the arm and obstacle arrangement into image space.  The DPP 

image space is made up of regions of virtual boundaries caused by the obstacles in the 
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environment.  A path is planned in image space and then transformed into joint space.  

The DPP algorithm possesses a significant requirement for computation. 

Wang and Hamam suggest trajectory planning and collision avoidance by 

representing the arm and objects as a set of convex polyhedra [46].  A doubly connected 

edge table  (DCET) is used to determine the interaction between objects in three 

dimensional space.  A path is iteratively calculated based on the geometric distances from 

each link of a robotic arm to the obstacle.  Their FORTRAN simulation on a VAX 

II/GPX took "a few minutes" to find an acceptable path.  The researchers suggest the use 

of heuristics to accelerate path planning. 

Galicki examines the use of global optimization of potential functions to plan 

collision-free trajectories [32].  His specific application is that of a three link robotic arm 

operating in 2d-space in the presence of a single obstacle.  Because Galicki's algorithm 

involves the optimization of both geometric trajectory path and the determination of the 

time parameterization of the trajectory, an iterative solution of nonlinear equations is 

necessary.  Galicki summarizes, "Numerical solution of the problem ... is a complex and 

time-consuming task." 

Lin and Fu take a divide-and-conquer approach to the collision avoidance and motion 

planning problem [49].  Their work deals with trajectory planning of an n degree of 

freedom manipulator where n is an arbitrary parameter of the system rather than a 

predefined, small constant.  First, the space of operation is divided into subspaces and 

cells.  Then, the problem of finding a collision free path is further decomposed into two 

separate problems.  Because, the path planning is all done in configuration space, the 

researchers concede that there is not yet an efficient way to practically implement their 

algorithm. 

Chuang and Ahuja use the Newtonian potential functions to plan the path of an object 

moving in the presence of obstacles [45].  The problem is first broken down into local 

planning problems and the global planning.  For the local planning, the objects are 
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considered to be charged.  In this way, the space between the objects is characterized by 

the repulsive fields generated by the imaginary charge.  The path is then planned by 

navigating a course that minimizes the function describing the fields in the space between 

the objects. 
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CHAPTER VI 

ROBOTIC ARM PROBLEM 

For robots to become effectively used in a wide range of application, they must gain 

the ability to work in unpredictable and changing environments.  Robots used in space 

exploration and construction will have to sense their environment and carry out their 

tasks regardless of the presence of objects in the work area.  This thesis addresses the 

problem of planning the trajectory of a three-link robotic arm in the presence of an 

obstacle. 

obstacle

goal

 

Figure 6-1.  A diagram of a robotic arm in the presence of an obstacle. 

For the purpose of designing the control system, the position of the obstacle and goal 

can be assumed to be available from sensory feedback.  A vision system, for example, 

could be used to generate Cartesian coordinates of the objects.  Also, the joint angle 

values are assumed to be available from position feedback sensors in the arm.  The 

system configuration that inspired this problem is shown in figure 6-2. 



33 

33 

Amps

obstacle

goal

Camera

Computer

Robotic arm

DAC

ADC

Input (obstacle and goal location)

Joint Angle Feedback

Output (joint angles)

Motor

 

Figure 6-2.  A sample configuration for the problem application. 

The arm should operate in two dimensions in an environment containing a randomly 

placed obstacle.  The starting position and desired position of the arm are arbitrary, as 

well.  The arm will be modeled as a three-link planar manipulator.  The controller will 

determine a series of joint angles, Θ(t), that move the end effector from a given starting 

position (xs, ys) to a desired final position (xg, yg) without colliding with the obstacle at 

(xo, yo). 

The robotic arm's end-effector position in Cartesian space can be directly related to its 

link lengths and joint angles by the following equations and figure 6-3. 

 x l l le = + + + + +1 1 2 1 2 3 1 2 3cos cos( ) cos( )θ θ θ θ θ θ  (10) 

 y l l le = + + + + +1 1 2 1 2 3 1 2 3sin sin( ) sin( )θ θ θ θ θ θ  (11) 
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Figure 6-3.  Robotic arm variable definitions. 

Notice that because the model of the arm contains three joints and is operating in a 

two-dimensional plane, redundancy exists in possible configurations of the joint angles 

for a given Cartesian coordinates location for the end-effector.  In one respect, this 

redundancy complicates the problem because there is no unique mapping available to 

convert a coordinate in Cartesian space to a specific point in joint space.  In fact, given a 

desired position of the end-effector, there is an infinite number of solutions for possible 

joint angles.  On the other hand, this gives the designer the freedom to select the arm 

movements based on power efficiency, or a straight line trajectory, or even on the 

observed behavior of an expert's control of an arm (as is the case in this thesis). 

The physical characteristics of the arm will be based on those of a Remotec industrial 

robotic arm available in the Intelligent Control Systems Lab of Texas A&M University - 

Kingsville.  The characteristics of importance for this problem are the link lengths and 

the physical constraints of the joints.  Table 6-1 lists these values. 

 

Physical Characteristic Minimum Angle Normalized Length  Maximum Angle 
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Link length, l1  1  

Link length, l2  0.824  

Link length, l3  0.737  

Joint constraints on θ1 0°  +180° 

Joint constraints on θ2 -90°  +90° 

Joint constraints on θ3 -25°  +25° 

Table 6-1.  The physical characteristics of a Remotec robotic arm. 

The goal must be assumed to lie within the possible reach of the end-effector and the 

obstacle must be assumed to lie outside the path of link, l1.  Using the direct kinematics 

equations 10 and 11, the constraints in table 6-1, and one final constraint that ye ≥ 0, all 

possible locations for the end-effector can be determined and are illustrated in figure 6-4.   

Reachable Region

2.561.65

1.00

0.82
0.74

 

Figure 6-4.  Normalized dimensions for Remotec arm and reachable region. 
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The problem therefore can be summarized as follows: 

 

 GIVEN A ROBOTIC ARM WITH: 

  • the current joint angles, Θ(0), 

  • an obstacle located at a known position, (xo, yo), 

  • and a desired position, or goal, (xg, yg); 

 

 DETERMINE A TRAJECTORY, Θ(t), SUCH THAT: 

  • the end-effector reaches the goal, 

  • the arm does not touch the obstacle, 

  • and the calculations can be performed in real-time with current hardware. 
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CHAPTER VII 

NEURO-FUZZY SOLUTION 

The problem described in the previous chapter and addressed in this thesis is actually 

a series of sub-problems.  Planning the trajectory of a robotic arm has been itself a topic 

of many research projects.  Planning the trajectory of a redundant robotic arm adds a new 

dimension to the problem -- more degrees of freedom, more nonlinear equations.  Place 

an obstacle in the work area and the problem becomes a challenge of optimizing 

differential equations, iterative numerical solutions, and "guess and shoot" methods.   

Chapter five gives a good summary of the work done in the areas of this problem.  

The largest disadvantage of previous solutions is the computer resources necessary to 

solve a system of equations or optimize a performance index.  Researchers acknowledge 

that "minutes" are necessary to plan one trajectory on some of the world's fastest 

computers.  Simply determining the equations to be solved is a formidable task.  What is 

needed is an approach that is easy to apply and will work in real-time. 

This problem is well addressed by neuro-fuzzy techniques because a solution is not 

easily found by analytical or numerical techniques.  While an analytical technique is 

difficult, moving an arm in the presence of an obstacle can be instinctively performed by 

a child.  Neuro-fuzzy systems excel in using sample data to determine an input-output 

relationship.  As explained in Chapter four, neuro-fuzzy technology is the fusing of both 

neural networks and fuzzy logic.  Neural networks bring to this solution the ability to 

learn while fuzzy logic is based on mimicking an expert's thinking.  In addition, as 

hardware technology progresses, more and more value will be placed on solutions that 

can utilize parallel processing, like neural networks. 

The field of neuro-fuzzy technology has gone in many directions.  The neuro-fuzzy 

technique implemented in this thesis is that of replacing the fuzzy logic rule base of a 
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traditional fuzzy logic system with a multilayer back propagation neural network.  Figure 

7-1 illustrates the type of neuro-fuzzy system used in this problem. 

Neural Net Rule BaseFuzzifiers
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Figure 7-1.  A sample neuro-fuzzy system. 

This type of system is beneficial for several reasons.  While it is true that a child is 

able to move an arm around an obstacle to reach a desired goal, that ability is intuitive.  

Putting the instructions for performing such a task into a neat, fuzzy logic, IF/THEN rule 

base is not easy.  Thus, there is a necessity for the neural network to learn the rules.  The 

fuzzifiers and defuzzifiers necessary for any fuzzy system provide an interface between 

an expert's control of a simulated arm and the neural network. 

The problem was addressed in the following steps, which will serve as an outline for 

the remainder of this chapter.  The state representation of the system, which would serve 

as the controller's input, was considered.  A simulator of the Remotec robotic arm was 
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written.  The simulator included a graphical display of a three-link planar manipulator, an 

obstacle and a goal.  The simulator was controllable from the keyboard and recorded all 

movements of the arm under "expert" control.  A generic neuro-fuzzy system was 

programmed.  The recorded data was used as the training set for the neuro-fuzzy system.  

The simulator and neuro-fuzzy controller were combined to simulate the arm under 

neuro-fuzzy control. 

STATE REPRESENTATION 

One of the primary considerations in the design of the neuro-fuzzy controller is the 

representation of the state of the system.  The ability of the final neuro-fuzzy controller to 

generalize a solution from training data will depend largely on the data representation 

scheme in the system.  The question about whether to input joint angles, Cartesian 

coordinates, relative distances, or a combination of these into the neuro-fuzzy network 

will also determine whether or not the system can converge during training. 

The following considerations guided the selection of state representation and are 

based on the fact that situations important to the trajectory chosen, should be an 

important part of the state representation scheme. 
• The state representation must excite the system if the end-effector is not at the correct 

position.  In other words, a steady state error of the end-effector's position must produce 
an error reducing response.  Therefore, the distance from the end-effector to the desired 
location goal should be an input to the controller. 

• The state representation should be similar for similar relative arrangements.  For 
example, the two arrangements of arm, obstacle, and goal in figure 7-2 would have 
similar acceptable trajectories and should therefore have similar state representation.  A 
scheme based solely on Cartesian coordinates may not allow a neuro-fuzzy system to 
generalize similar strategies for the two arrangements below. 
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obstacle

goal
obstacle

goal

 

Figure 7-2.  The relative position of the objects is the same. 

• A scheme based on joint space might cause a neuro-fuzzy system to interpolate similar 
strategy for completely different situations.  The representation should be different for the 
cases in figure 7-3. 

obstacle

goal obstacle

goal

 

Figure 7-3.  The obstacle and goal switch places. 

• The representation should take into account the physical constraints so that interpolation 
into the table or past a joint's capabilities does not occur. 

• The output of the system will be the three small changes in angle, ∆θi, that should be 
made to each of the three joints to move the end-effector toward the goal without hitting 
the obstacle. 

 

These guidelines are not sufficiently met by using only joint space or only Cartesian 

coordinates.  On the basis of these guidelines, the following inputs and outputs were 

chosen to represent the system and are illustrated in figure 7-4. 

 

 SEVEN INPUTS: 
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  θ1, joint angle of link1 to the base 

  θ2, joint angle of link2 from link1's axis 

  θ3, joint angle of link3 from link2's axis 

  xo, horizontal distance from the end-effector to the obstacle 

  yo, vertical distance from the end-effector to the obstacle 

  xg, horizontal distance from the end-effector to the goal 

  yg, vertical distance from the end-effector to the goal 

  

 THREE OUTPUTS: 

  ∆θ1, a small change in the angle between link1 and the base 

  ∆θ2, a small change in the angle between link2 and the link1 axis 

  ∆θ3, a small change in the angle between link3 and the link2 axis 

obstacle

goal

θ
1

θ
2

θ
3

xo
y
g

y
o xg

 

Figure 7-4.  The state representation for the obstacle problem. 

ROBOTIC ARM SIMULATION 

In order to obtain the training data and test the robotic arm controller, it was 

necessary to write a simulation program of the robotic arm.  The simulator was written in 

C on a PC, as was all the code for this thesis project.  Appendix I contains a complete 
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listing of the programming done during this project.  Included in this chapter are the data 

structure definitions.  The data structure definitions are the foundation of well-organized 

programming code and they provide insight into the nature of the rest of the program. 

The primary data structure in the simulator was the Link structure.  The Link structure 

is defined as shown in figure 7-5.  A robotic arm is programmed as a linked list of Links.  

The obstacle and goal are represented on the screen as circles.  The simulated arm is 

controlled from the keyboard.  The program records its data in two data files.  One data 

file contained the state vectors which acted as the inputs to the neuro-fuzzy system during 

training.  The other data file stored the "expert's" movements and served as the desired 

output of the training system.  All the data was normalized to be in the range of (0, 1).  

Figure 7-6 shows a screen snap-shot of the robotic arm simulator and a sample trajectory 

while under "expert" control. 

 

Figure 7-5.  The robotic arm LINK data structure. 

 

Figure 7-6.  A sample training trajectory obtained from the simulator. 

struct Link {     /* A link extending from a joint */ 
 double len;     /* Length of link in pixels */ 
 double theta;    /* Angle relative to previous link */ 
 double max_theta;  /* Max theta caused by joint constraint */ 
 double min_theta;  /* Min theta caused by joint constraint */ 
 double phi;     /* Angle relative to horizontal */ 
 struct Link *next;  /* Pointer to next link in linked list */ 
 }; 
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The training samples were obtained by cycling through a series of goal and obstacle 

positions.  The training samples included two starting positions of the arm -- (θ1 = 0; θ2 

= 0; θ3 = 0) and (θ1 = 180; θ2 = 0; θ3 = 0).  Goal and obstacle positions were taken from 

the entire reachable region.  As the training samples were recorded, each movement 

created a new input to the neuro-fuzzy system.  Therefore, selecting starting positions of 

the arm at the two extremes of possible movements generated training samples that 

extended over the entire state space.  Obtaining training samples over an entire range of 

possible state space is important for neuro-fuzzy design. 

NEURO-FUZZY PROGRAMMING 

Once the training samples were normalized, and in ASCII data files, the code to run 

the neuro-fuzzy system was written.  The important data structures in the neuro-fuzzy 

code included Node, Layer, and Net.  The definition of these data structures are shown in 

figure 7-7. 

 

 
struct Node {      /* a neural network node */ 
 int numweights;    /* number of inputs to the node */ 
 double *win;     /* current weights array */ 
 double *winlast;    /* last weights array */ 
 double sum;      /* sum of inputs*weights */ 
 double output;     /* activation output */ 
 double error;     /* BPN error at this node */ 
 }; 
 
struct Layer {      /* an in, out, or hid layer */ 
 int numnodes;     /* number of nodes in this layer */ 
 struct Node *nodes;   /* ptr to next node in this layer */ 
 };  
 
struct Net {      /* a neural network */ 
 int numlayers;     /* the number of layers in this NN */ 
 struct Layer *layers;  /* ptr to next layer in this NN */ 
 }; 
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Figure 7-7. The neuro-fuzzy data structures. 

The neuro-fuzzy engine is completely void of any constants or programming related 

to a robotic arm.  Consequently, it can be used for any input/output data.  The number of 

inputs, the number of nodes and even the fuzzy membership functions are defined for 

individual systems in an ASCII text file.  This text file is termed the FNN data file.  The 

weights for a particular training set are stored in a text file, which is also specified in the 

FNN data file.  A sample FNN data file is shown in figure 7-8. 
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Figure 7-8.  A sample FNN data file. 

THE NEURO-FUZZY CONTROLLER 

Once training samples are obtained and a neuro-fuzzy system is trained to this data, 

the controller can be tested on the robotic arm simulator.  The tests are performed by 

placing the objects at random locations and assigning a random starting position for the 

arm.  The controller simulation must quantify the performance of the proposed neuro-

rem The number of inputs and outputs on the neuro-fuzzy network 
inputs=7 
outputs=3 
 
rem The number of hidden layers and nodes 
hidden=1 
hidnodes=65 
 
rem The activation slope constant and training parameters 
alpha=1 
beta=.5 
gamma=.1 
epochs=300 
maxerror=.01 
 
rem The data files 
input_file=input.dat 
samples_file=input.dat 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
 
rem Number of fuzzy values for each input and output 
input_values=7 7 7 3 3 3 3 
output_values=3 3 3 
 
rem The fuzzy membership function data 
input_max= 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
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fuzzy controller.  To do so, the original design specifications of the problem statement 

should be addressed.  The design specification of Chapter 6 listed the following as the 

goals of the system: 

 

 DETERMINE A TRAJECTORY, Θ(t), SUCH THAT: 

  • the end-effector reaches the goal, 

  • the arm does not touch the obstacle, 

  • and the calculations can be performed in real-time with current hardware. 

 

In order to judge the controllers based on these guidelines, the simulated neuro-fuzzy 

controller determines the percentage error in reaching the goal, determines whether or not 

a collision occurred, and performs all the necessary calculations so that a judgment can 

be made about the possibility of real-time application.  The first and third criteria are 

straight-forward.  A collision with the obstacle on any part of the arm can be detected 

from the joint angles and obstacle position. 

Given a robotic arm, composed of a series of links, operating in the presence of an 

obstacle whose Cartesian coordinate position is known, the shortest distance between the 

obstacle and the arm is the minimum of the distance between the obstacle and each link 

of the arm.  The distance, d, from a link to an obstacle is determined by equations 12 

through 17 where all the variables are defined in figure 7-9. 

 d x x y y12 2 1
2

2 1
2= − + −( ) ( )  (12) 

 d x x y y10 1 0
2

1 0
2= − + −( ) ( )  (13) 

 d x x y y02 0 2
2

0 2
2= − + −( ) ( )  (14) 
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Figure 7-9.  Determination of a collision between the obstacle and a link. 

If d < r, a collision has occurred.  The function that checks for a collision is shown in 

figure 7-10. 
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Figure 7-10.  Source code for collision detection function. 

/**********************************************************************
* 
*  Determine if the arm is intersecting an object 
***********************************************************************
/ 
int Collision(struct Link *links, struct Point *obstacle, double 
margin) 
{ 
 double d, d12, d10, d02, d12a, d12b, t0, t1, t2; 
 struct Link *l; 
 struct complex p0, p1, p2; 
 struct Point p; 
 
 Pol2Rec(obstacle, &p0); 
 p1.x = 0; 
 p1.y = 0; 
 
 for(l = links; l!=NULL; l = l->next)  { 
  p.rho = l->len; 
  p.phi = l->phi; 
  Pol2Rec(&p, &p2); 
  p2.x += p1.x; 
  p2.y += p1.y; 
 
  d12 = Distance(&p1, &p2); 
  d10 = Distance(&p1, &p0); 
  d02 = Distance(&p0, &p2); 
  t1 = acos( (d12 * d12 + d10 * d10 - d02 * d02) / (2 * d12 * d10)); 
  t2 = acos( (d12 * d12 + d02 * d02 - d10 * d10) / (2 * d12 * d02)); 
 
  d = d10 * sin(t1); 
  if(t1 > M_PI_2) d = d10; 
  if(t2 > M_PI_2) d = d02; 
  if(d < margin) return ON; 
  p1.x = p2.x; p1.y = p2.y;  } 
  return OFF; 
} 
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CHAPTER VIII 

EXPERIMENTAL RESULTS 

To test the use of neuro-fuzzy systems on control of a robotic arm, first a simulator 

was used to generate training samples from a human's example of controlling of an arm.  

Then, the training samples were used to train seven different neuro-fuzzy controllers.  

The seven controllers are named FNN1, FNN2, ... FNN7 for reference.  The controllers 

varied in the definition of their fuzzy membership functions.  The actual text files which 

defined the fuzzy membership functions for each controller are shown in Appendix II.  

This chapter contains the results of the training sessions and the testing of each controller 

on the simulated arm. 

The results are primarily shown in three different types of graphs.  The fuzzy 

membership function graphs define the way the crisp values are converted into fuzzy 

values.  There is a fuzzy membership function graph for each of the seven controllers.  

The RMS training error graph indicates how well each neuro-fuzzy controller was able to 

learn the training data.  The performance histograms quantify the controller's 

performance in moving the simulated arm from the starting position to the goal without 

touching the obstacle. 

Figure 8-1 is a graph of the FNN1 fuzzy membership function.  It assigns a crisp 

value's degree of membership to three fuzzy values -- NEG, ZERO, and POS.  The fuzzy 

membership functions used in the controllers FNN2 and FNN3, on the other hand, have 

seven fuzzy values -- NL, NM, NS, ZERO, PS, PM, and PL.  Figures 8-2 and 8-3 

illustrate the difference between FNN2 and FNN3.  Fnn3 has a concentration of 

membership values near ZERO.  This concentration of values near the center of the 

function definition is motivated by the fact that the motion strategy changes as the arm 

approaches the obstacle or goal.  Figure 8-4 shows the learning capabilities of these three 

controllers.  Figure 8-5 compares their performance. 
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Figure 8-1.  The fuzzy membership function definition FNN1. 
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Figure 8-2.  The fuzzy membership function definition FNN2. 
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Figure 8-3.  The fuzzy membership function definition FNN3. 
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Figure 8-4.  The RMS training error of FNN1, FNN2, and FNN3. 
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Figure 8-5.  Performance histogram of the neuro-fuzzy controller for FNN1, FNN2 and 
FNN3. 

A comparison of the different controllers can be made from the performance 

histograms.  The "collisions" category of the histogram records the percentage of runs 

that resulted in a collision with the obstacle.  Figure 8-6 (a) and (b) are screen-shots of the 

simulator under neuro-fuzzy control.  It shows samples of the controller moving the arm 

into the obstacle.  When the neuro-fuzzy controller attempted to move the arm past the 

joint's capabilities, the "constraint" category was incremented.  Figure 8-7 shows samples 

of this case.  The percentage error categories record how close the end effector was to the 

goal at the arm's final position.  Figure 8-8 (a) and (b) are actual trajectories planned by 

the neuro-fuzzy controller that incremented the 0%-5% error category. 
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(a) 

 

(b) 

Figure 8-6.  Samples of collisions while under neuro-fuzzy control. 

 

(a) 



54 

 

 

(b) 

Figure 8-7.  Samples of neuro-fuzzy control in which constraint limits were exceeded. 

 

(a) 

 

(a) 
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Figure 8-8.  Samples of successful control by the neuro-fuzzy controllers. 

The fuzzy membership function definitions FNN4 and FNN5 increase the granularity 

to 11 fuzzy values as shown in figures 8-9 and 8-10.  Similar to FNN3, FNN5 emphasizes 

the region near the center of operation.  The training data and performance histogram are 

shown in figures 8-11 and 8-12, respectively. 
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Figure 8-9.  The fuzzy membership function definition FNN4. 
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Figure 8-10.  The fuzzy membership function definition FNN5. 
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Figure 8-11.  The RMS training error of FNN4 and FNN5. 
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Figure 8-12.  Performance histogram of the neuro-fuzzy controller for FNN4 and FNN5. 

The last two controllers increased the number of fuzzy values to fifteen.  FNN6 and 

FNN7 are shown in figures 8-13 and 8-14, respectively.  Figures 8-15 and 8-16 show the 

controllers' error curves and performance histograms. 
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Figure 8-13.  The fuzzy membership function definition FNN6. 
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Figure 8-14.  The fuzzy membership function definition FNN7. 
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Figure 8-15.  The RMS training error of FNN6 and FNN7. 
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Figure 8-16.  Performance histogram of the neuro-fuzzy controller for FNN6 and FNN7. 
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Two more charts are helpful in interpreting the experimental results.  Figure 8-17 

compares the final RMS training error of the seven controllers.  Figure 8-20 compares the 

collisions and success rate for the seven controllers. 

Finally, many attempts were made to train a back propagation neural network to 

control the simulated arm.  The neural networks without the fuzzification layer were not 

able to learn from the sample data. 
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Figure 8-17.  A comparison of the final RMS training errors. 
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Figure 8-18.  A comparison of the performance of all the controllers.
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CHAPTER IX 

CONCLUSION AND FUTURE WORK 

The field of neuro-fuzzy technology will become an important part of intelligent 

control.  The ability to learn how to control a process from sample data is its biggest 

asset.  In this thesis, seven neuro-fuzzy controllers were trained to emulate a human's 

example control of a robotic arm.  From the experimental results of Chapter VIII, two 

conclusions can be drawn about the application of neuro-fuzzy control. 

First, the membership function definitions are an important part of the neuro-fuzzy 

system.  Figure 8-17, on page 61, shows that the final training error was reduced 50% by 

increasing the number of fuzzy values in a fuzzy set.  Figure 8-18, also on page 61, shows 

that membership functions, defined with an important aspect of the problem in mind, 

consistently improved performance by more than 25%. 

Second, the fuzzification of a neural network's inputs and outputs allows neural 

networks to learn more complex functions than ever before.  The function being learned 

in this thesis project is very complex.  An AI researcher would have a difficult time 

training a traditional neural network to the sample data used in this work.  Not only were 

the neuro-fuzzy networks able to converge to a solution, they did so in a relatively few 

number of training epochs and with as many as 100 hidden nodes. 

The results of Chapter VIII give a good indication of the nature of neuro-fuzzy 

systems.  The performance of the neuro-fuzzy controllers in this specific application, 

however, is less than perfect.  Even the best controller had a collision rate of 17%.  What 

would improve the performance?  What more needs to be understood about this new 

technology? 

Programming some heuristic rules into the control of the arm could improve 

performance.  A large percentage of the "failures" resulted from the controller attempting 

to move past the physical joint constraints.  The control program could move the arm 
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away from such limitations.  Another situation that decreases performance occurs when 

the arm starts oscillating between two points.  While ideally, these situations would 

naturally not occur in the neural network, a few heuristics in the control program could 

decrease these problems. 

A trained neuro-fuzzy system is only as good as the training data used to train it.  The 

seven FNN controllers of this project were trained to 2150 training samples.  Future work 

in this area should look into determining the adequacy of training samples.  Are there 

enough training samples?  Are all areas of the state space represented?  A study of the 

relationship of the training samples and the fuzzy membership functions would be 

particularly helpful. 

The use of neuro-fuzzy systems for control has been examined.  It is the opinion of 

this researcher that fuzzification of a neural network's inputs and outputs will become 

standard procedure in neural network applications.



 64 

REFERENCES 

[1] C. Altrock and B. Krause, "Fuzzy Logic and Neurofuzzy Technologies in 

Embedded Automotive Applications", Proceedings of Fuzzy Logic '93, pp. A113-

1 - A113-9. 

[2] H. Berenji, Y. Chen, C. Lee, S. Murugesan, and J. Jang, "An Experiment-based 

Comparative Study of Fuzzy Logic Control" Proceedings of the American 

Association for Artificial Intelligence Conference, 1988, pp. 2751 - 2753. 

[3] M. Caudill,  "Neural Networks Primer, Part I", AI Expert, (December, 1987), pp. 

46-52. 

[4] M. Caudill,  "Neural Networks Primer, Part II", AI Expert, (February, 1988), pp. 

55-61. 

[5] M. Caudill,  "Neural Networks Primer, Part III", AI Expert (June, 1988), pp. 53-

59. 

[6] E. Cox,  "Fuzzy Fundamentals"  IEEE Spectrum, (October 1993), pp. 58-61. 

[7] L. N. Cooper,  "Hybrid Neural Network Architectures:  Equilibrium Systems That 

Pay Attention", in Neural Networks: Theory and Applications (ed. Richard J. 

Mammone and Yehoshua Y. Zeevi)  Boston: Academic Press, Inc., 1991, pp. 81-

96. 

[8] A. Guez, J. Eilbert, and M. Kam, "Neural Network Architecture for Control", 

IEEE Control Systems Magazine (April, 1988), pp. 22 - 25. 

[9] R. Hecht-Nielson,  "Neurocomputer Applications" in Proceedings of the 1987 

IEEE Asilomar Signals & Systems Conference.  IEEE Press, 1988. 



65 

 

[10] D. V. Hillman,  "Integrating Neural Nets and Expert Systems", AI Expert, (June, 

1990) pp. 54-59. 

[11] J. Jang, "Self-Learning Fuzzy Controllers Based on Temporal Back Propogation", 

IEEE Transactions on Systems, Man, and Cybernetics, 1992. 

[12] E. Khan, "An Elegant Combination of Fuzzy Logic & Neural Nets", Proceedings 

of Fuzzy Logic '93, pp. A223-1 - A223-7. 

[13] S. Kong and B. Kosko, "Comparison of Fuzzy and Neural Truck Backer-Upper 

Control Systems" in Neural Networks and Fuzzy Systems.  Englewood Cliffs: 

Prentice Hall Inc., 1992. 

[14] B. Kosko,  Neural Networks and Fuzzy Systems.  Englewood Cliffs:  Prentice Hall 

Inc., 1992. 

[15] R. Lea, Y. Jani, and H. Berenji, "Fuzzy Logic Controller with Reinforcement 

Learning for Proximity Operations and Docking", Fifth IEEE International 

Symposium on Intelligent Control, 1990. 

[16] Y. Li and C. Lau, "Development of Fuzzy Algorithms for Servo Systems", in 

IEEE Control Systems Magazine, (April, 1990), pp. 65 - 71. 

[17] L. McLauchlin, Supervised and Unsupervised Learning Applied to Robotic 

Manipulator Control, (Master's Thesis)  Kingsville, TX: Texas A&I University, 

August, 1993. 

[18] D. Nauck, F. Klawonn and R. Kruse,  "Combining Neural Networks and Fuzzy 

Controllers"  Fuzzy Logic in Artificial Intelligence (FLAI93),  ed. Klement, Erich 

Peter and Slany, Wolfgang, pp. 35-46, 1993. 



66 

 

[19] C. Neffenger, "Fuzzy Logic in Motor Control", Fuzzy Logic '93 Proceedings,  pp. 

A111-1 - A111-10. 

[20] D. Nguyen and B. Widrow, "Neural Networks for Self Learning Control 

Systems", IEEE Control Systems Magazine, (April, 1990), pp. 18 - 23. 

[21] P. Pacini and B. Kosko,  "Comparison of Fuzzy and Kalman-Filter Target-

Tracking Control Systems" in Neural Networks and Fuzzy Systems.  Englewood 

Cliffs: Prentice Hall Inc., 1992. 

[22] W. Pedrycz, "Fuzzy Sets and Neurocomputations: Knowledge Representation and 

Processing in Intellingent Controllers",  Fifth IEEE International Symposium on 

Intelligent Control, 1990, pp. 626 - 630. 

[23] D. Psaltis, A. Sideris, and A. Yamamura, "A Multilayered Neural Network 

Controller", IEEE Control Systems Magazine, (April, 1988), pp. 17-21. 

[24] S. Rahman, "Neural-Fuzzy Consumer Appliance Applications", Proceedings of 

Fuzzy Logic '93, pp. M234-1 - M234-7. 

[25] M. Sadiku and M. Mazzara.  "Computing with Neural Networks"  IEEE 

Potentials, (October, 1993), pp. 14-16. 

[26] D. G. Schwartz and G. J. Klir.  "Fuzzy Logic Flowers in Japan"  IEEE Spectrum 

(July, 1992). 

[27] L. A. Zadeh.  "Fuzzy Sets"  Information and Control,  (June, 1965), pp. 338 - 353. 

[28] L. A. Zadeh.  "Outline of a New Approach to the Analysis of Complex Systems 

and Decision Processes"  IEEE Transactions on Systems, Man, and Cybernetics  

(January 1973), pp. 28 - 44. 



67 

 

[29] O. Iida, M. Sato, M. Kiguchi, T. Iwamura, S. Fukumura.  "Blast Furnace Control 

by Artificial Intelligence",  Artificial Intelligence in Real-time Control (ed. M. G. 

Rodd and G. J. Suski)  Swansea, UK: Pergamon Press, 1988, p. 73. 

[30] W. S. McCulloch and W. Pitts, "A Logical Calculus of the Ideas Imminent in 

Nervous Activity," Bulletin of Mathematical Biophysics,  Vol 5, 1943. 

[31]  V. J. Lumelsky, "Effect of Kinematics on Motion Planning for Planar Robot 

Arms Moving Amidst Unknown Obstacles,"  Journal of Robotics and Automation  

Vol. RA-3, (June, 1987), pp. 207-222. 

[32] M. Galicki, "Optimal Planning of a Collision-free Trajectory of Redundant 

Manipulators," The International Journal of Robotics Research, Vol 11, No. 6, 

(December, 1992), pp. 549-559. 

[33] W. J. Chung, W. K. Chung, and Y. Youm, "Inverse Kinematics of Planar 

Redundant Manipulators Using Virtual Links and Displacement Distribution 

Schemes,"  Proceedings of the 1991 IEEE International Conference on Robotics 

and Automation, April 1991, pp. 926 - 932. 

[34] K. P. Archer and S. Wang, "Fuzzy Set Representation of Neural Network 

Classification Boundaries", IEEE Transactions on Systems, Man, and 

Cybernetics,  (July/August, 1991), pp. 735-742. 

[35] S. Shao, "Fuzzy Self-organzing Controller and Its Application for Dynamic 

Processes", Fuzzy Sets and Systems, (May, 1988), pp. 151-164. 

[36] A. Blanco and M. Delgado, "A Direct Fuzzy Inference Procedure By Neural 

Networks", Fuzzy Sets and Systems, (September 1993), pp. 133-141. 



68 

 

[37] J. M. Keller and D. J. Hunt, "Incorporating Fuzzy Membership Functions into the 

Perceptron Algorithm", IEEE Transactions on Pattern Analysis and Machine 

Intelligence, (November, 1985), pp. 693-699. 

[38] S. C. Lee, and E. T. Lee, "Fuzzy sets and neural networks" Journal of Cybernetics  

Vol 4. pp. 83 -103, 1974. 

[39] W. Pedrycz, "Fuzzy Neural Networks and Neurocomputations", Fuzzy Sets and 

Systems, Vol. 56, (May 1993), pp. 1-28. 

[40] S. K. Pal and S. Mitra, "Multilayer Perceptron, Fuzzy Sets, and Classification", 

IEEE Transactions on Neural Networks, Vol 3.  (September 1992), pp. 683-697. 

[41] Berenji, Hamid R. and Khedkar, Pratap.  "Learning and Tuning Fuzzy Logic 

Controllers Through Reinforcements"  IEEE Transactions on Neural Networks 

Vol. 3.  pp. 724 - 740,  1992. 

[42] W. Z. Qiao, W. P. Zhuang, T. H. Heng, S. S. Shan, "A Rule Self-Regulating 

Fuzzy Controller" Fuzzy Sets and Systems,  pp. 13-21,  1992. 

[43] J. M. Keller, R. R. Yager, and H. Tahani, "Neural Network Implementation of 

Fuzzy Logic"  Fuzzy Sets and Systems (Vol 45),  pp. 1-12, 1992. 

[44] J. M. Keller, H. Tahani,  "Backpropagation Neural Networks for Fuzzy Logic"  

Information Sciences  Vol 62,  pp. 205-221, 1992. 

[45] J. H. Chuang and N. Ahuja, "Path Planning Using the Newtonian Potential", 

Proceedings of the 1991 IEEE International Conference on Robotics and 

Automation  (April 1991), pp. 558 - 563. 



69 

 

[46] D. Wang and Y. Hamam, "Optimal Trajectory Planning of Manipulators With 

Collision Detection and Avoidance", The International Journal of Robotics 

Research, Vol 11, No. 5  (October 1992), pp. 460 - 468. 

[47] C. J. J. Paredis and P. K. Khosla, "On Kinematic Design of Serial Link 

Manipulators", Proceedings of the 30th IEEE Conference on Decision and 

Control, (1991), pp. 517 - 531. 

[48] A. Bagchi and H. Hatwal, "A Solution Strategy for Collsion Avoidance of 

Multiple Bodies Moving on a Plane Using Fuzzy Logic", Proceedings of the 29th 

IEEE Conference on Decision and Control, (1990), pp. 452 - 461 

[49] C. H. Lin and L. C. Fu, "Motion Planning of Robot Manipulators with Arbitrary 

Number of DOF", Proceedings of the 30th IEEE Conference on Decision and 

Control, (1990), pp. 359 - 370. 

[50] R. T. Newton and Y. Xu, "Real-time Implementation of Neural Network Learning 

Control of a Flexible Space Manipulator", Proceedings of the IEEE International 

Conference on Robotics and Automation, Vol. 1,   (May 1993), pp. 135 - 141. 

[51] F. Arai, L. Rong, and T. Fukuda, "Trajectory Control of Flexible Plate Using 

Neural Network", Proceedings of the IEEE International Conference on Robotics 

and Automation, Vol 1  (May 1993), pp. 155 - 160. 

[52] S. Liu and H. Asada, "Teaching and Learning of Deburring Robots Using Neural 

Networks", Proceedings of the IEEE International Conference on Robotics and 

Automation, Vol 3  (May 1993), pp. 339 - 345. 

[53] T. C. Hsia and Z. Mao, "Obstacle Avoidance Inverse Kinematics Solution of 

Redundant Manipulators by Neural Networks", Proceedings of the IEEE 



70 

 

International Conference on Robotics and Automation  Vol. 3  (May 1993), p. 

1014. 

[54] J. R. Cooperstock and E. E. Milios, "An Efficiently Trainable Neural Network 

Based Vision-Guided Robot Arm", Proceedings of the IEEE International 

Conference on Robotics and Automation Vol. 2  (May 1993), pp. 738 - 743. 

[55] J. D. Yegerlehner and P. H. Meckl, "Experimental Implementation of Neural 

Network Controller for Robot Undergoing Large Payload Changes", Proceedings 

of the IEEE International Conference on Robotics and Automation, Vol. 2.  (May 

1993), pp. 744 - 749. 

[56] C. C. Jou and N. C. Wang, "Training a Fuzzy Controller to Back Up an 

Autonomous Vehicle", Proceedings of the IEEE International Conference on 

Robotics and Automation Vol. 1, (May 1993), pp. 923 - 928.



 71 

APPENDIX ONE 

All the code for this thesis project is written in C and is the original work of the 

author.  The code can be divided into three groups -- arm simulation, neuro-fuzzy engine, 

and neuro-fuzzy controller. 

ARM SIMULATION 

/**********************************************************************
******** 
*  FARM.H 
*  the structure definitions and function definitions for 
*  the arm simulation under neuro-fuzzy control 
*  by Wallace Kelly 
*  February 13, 1994 
*  revision on 6/14/94 for minor changes 
***********************************************************************
*******/ 
#define OFF 0 
#define ON 1 
#define NO 0 
#define YES 1 
#define READ 0 
#define WRITE 1 
#define APPEND 2 
#define FAILURE 0 
#define SUCCESS 1 
#define CLIPOFF 0 
#define CLIPON 1 
#define MAXFILENAME 64 
#define MAXLEN 640 
#define pi2 6.283185314 
 
#define strequ !strcmp 
 
struct Link {     /* A link extending from a revolute joint */ 
 double len;    /* Length of link in pixels */ 
 double theta;    /* Angle relative to previous link, in radians 
*/ 
 double max_theta;  /* Maximum theta caused by joint constraint */ 
 double min_theta;  /* Minumum theta caused by joint constraint */ 
 double phi;    /* Angle relative to horizontal */ 
 struct Link *next;  /* Pointer to next link in linked list */ 
 }; 
 
struct Point {    /* A structure for polar coordinates */ 
 double rho;    /* the distance from the origin */ 
 double phi;    /* the angle from the x axis to the radius vector 
*/ 
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 }; 
 
/**********************************************************************
******* 
* Initialize the link data structure for an arm 
***********************************************************************
******/ 
struct Link *IniLinks(void); 
 
/**********************************************************************
******* 
*   Add a link to a link struct 
***********************************************************************
******/ 
int AddLink(struct Link *links, double len, double theta, double 
max_theta, double min_theta); 
 
/**********************************************************************
******* 
* Set the 'linknum' joint to 'theta' degrees 
***********************************************************************
******/ 
int SetLink(struct Link *links, int linknum, double theta_norm); 
 
/**********************************************************************
******* 
* Move the 'linknum' joint by 'd_theta' degrees 
***********************************************************************
******/ 
int MoveLink(struct Link *links, int linknum, double d_theta); 
 
/**********************************************************************
******* 
* Draw the arm 
***********************************************************************
******/ 
void DrawArm(struct Link *links, int color); 
 
/**********************************************************************
******* 
*  Calculates the Cartesian coordinates of the end-effector 
***********************************************************************
******/ 
void EndEffector (struct Link *links, struct complex *p); 
 
/**********************************************************************
******* 
*  Determine if the arm is intersecting with an object 
***********************************************************************
******/ 
int Collision(struct Link *links, struct Point *obstacle, double 
margin); 
 
/**********************************************************************
******* 
*  Draw a circle to simulate an obstacle or goal 
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***********************************************************************
******/ 
void Circle(double x, double y, double radius, int color); 
 
/**********************************************************************
******* 
*  The function, radius and color for a goal 
***********************************************************************
******/ 
void DrawGoal(struct Point *g); 
 
/**********************************************************************
******* 
*  The function, radius and color for an obstacle 
***********************************************************************
******/ 
void DrawObstacle(struct Point *p); 
 
/**********************************************************************
******** 
*  Generate a random number between min and max 
***********************************************************************
*******/ 
double Random(double min, double max); 
 
/**********************************************************************
******* 
* Returns the distance between two points 
***********************************************************************
******/ 
double Distance(struct complex *p1, struct complex *p2); 
 
/**********************************************************************
******** 
*  Return the distance between to polar points 
***********************************************************************
*******/ 
double PDistance(struct Point *p1, struct Point *p2); 
 
/**********************************************************************
******** 
*  Determine the rectangular equivalent of a polar coordinate 
***********************************************************************
*******/ 
void Pol2Rec(struct Point *p, struct complex *r); 
 
/**********************************************************************
******* 
* Copy the current state into an array 
***********************************************************************
******/ 
void GetState(double *state, struct Link *links, struct Point *goal, 
struct Point *obstacle); 
 
 
/**********************************************************************
******** 
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*  FNN.H 
*  the structure definitions and function definitions for 
*  a basic backpropagation fuzzy neural network 
*  by Wallace Kelly 
*  February 9, 1994 
*  adapted for fuzzy 2/22/94 
*  revision on 5/17/94 for flexibility 
*  revision on 6/14/94 for minor changes 
***********************************************************************
*******/ 
#define OFF 0 
#define ON 1 
#define NO 0 
#define YES 1 
#define READ 0 
#define WRITE 1 
#define APPEND 2 
#define FAILURE 0 
#define SUCCESS 1 
#define CLIPOFF 0 
#define CLIPON 1 
#define MAXFILENAME 64 
#define pi2 6.283185314 
 
#define strequ !strcmp 
 
struct Node {      /* a neural network node */ 
 int numweights;    /* number of inputs to the node */ 
 double *win;     /* current weights array */ 
 double *winlast;   /* last weights array */ 
 double sum;     /* sum of inputs*weights */ 
 double output;    /* activation output */ 
 double error;     /* BPN error at this node */ 
 }; 
 
struct Layer {     /* an in, out, or hid layer */ 
 int numnodes;     /* number of nodes in this layer */ 
 struct Node *nodes;  /* ptr to next node in this layer */ 
 };  
 
struct Net {      /* a neural network */ 
 int numlayers;    /* the number of layers in this NN */ 
 struct Layer *layers;  /* ptr to next layer in this NN */ 
 }; 
 
struct NetworkInfo {   /* all the info to start a net */ 
 int numinputs; 
 int numhidlayers; 
 int numoutputs; 
 int *numhidnodes; 
 int *numnodes; 
 int numlayers; 
 double alpha; 
 double beta; 
 double gamma; 
 char *input; 
 char *samples; 
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 char *desired; 
 char *weights; 
 char *error; 
 int *input_values; 
 int *output_values; 
 double **input_max; 
 double **output_max; 
 unsigned epochs; 
 double maxerror;  }; 
 
/**********************************************************************
******** 
*  malloc function with the advantage of error catching 
***********************************************************************
*******/ 
void *MemAlloc(size_t size); 
 
/**********************************************************************
******** 
*  free function with benefit of nulling pointers 
***********************************************************************
*******/ 
void Free(void *ptr); 
 
/**********************************************************************
******** 
*  Initialize the nodes in a layer 
***********************************************************************
*******/ 
struct Node *IniNodes(int nodes_prev, int numnodes); 
 
/**********************************************************************
******** 
*  Initialize the layers in a network 
***********************************************************************
*******/ 
struct Layer *IniLayers(int numlayers, int *numnodes); 
 
/**********************************************************************
******** 
*  Initialize a neural network 
***********************************************************************
*******/ 
struct Net *IniNet(int numlayers, int *numnodes); 
 
/**********************************************************************
******** 
*  Input a string, and attach a default extension if necessary 
***********************************************************************
*******/ 
char *GetFileName(const char *string); 
 
/**********************************************************************
******** 
*  fopen function with advantage of error catching, etc 
***********************************************************************
*******/ 
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FILE *Fopen(char *filename, int m); 
 
/**********************************************************************
******** 
*  Store the neural network weights in a file 
***********************************************************************
*******/ 
void StoreWeights(char *filename, struct Net *net); 
 
/**********************************************************************
******** 
*  Load the neural network weights from a file 
***********************************************************************
*******/ 
void LoadWeights(char *filename, struct Net *net); 
 
/**********************************************************************
******** 
*  Input the values in an array into the input layer's output 
***********************************************************************
*******/ 
void InputArray(double *array, struct Net *net); 
 
/**********************************************************************
******** 
*  Perform the forward propagation 
***********************************************************************
*******/ 
void RunNN(struct Net *net); 
 
/**********************************************************************
******** 
*  Perform the backpropagation 
***********************************************************************
*******/ 
void BackPropagate(double *desired, struct Net *net); 
 
/**********************************************************************
******** 
*  Calculate the root mean square error of all the inputs 
***********************************************************************
*******/ 
double ErrorNN(double *inputs, double *desired, struct Net *net, struct 
NetworkInfo *info); 
 
/**********************************************************************
******** 
*  Print the values of the outputs of the last neurons 
***********************************************************************
*******/ 
void ShowOutput(struct Net *net, struct NetworkInfo *info); 
 
/**********************************************************************
******** 
*  Set the GLOBAL constants - alpha, beta, gamma 
***********************************************************************
*******/ 



77 

 

void BPN_Constants(double a, double b, double g); 
 
/**********************************************************************
******** 
*  Get the network information from a file 
***********************************************************************
*******/ 
struct NetworkInfo *GetNetInfo(FILE *fp); 
 
/**********************************************************************
******** 
*  Load an array of size numbers 
***********************************************************************
*******/ 
int DoubleIn(FILE *fp, double *a, int size); 
 
/**********************************************************************
******** 
* Fuzzify the values of an array 
***********************************************************************
*******/ 
void Fuzzify(double *in, double *fuzzified, double **max_points); 
 
/**********************************************************************
******** 
* Defuzzify the values of an array 
***********************************************************************
*******/ 
void Defuzzify(double *f, double *out, double **max_points); 
 
/**********************************************************************
******* 
* Graphics function 
***********************************************************************
******/ 
int InitializeScreen(void); 
 
/**********************************************************************
******** 
* Return the output of the network 
***********************************************************************
*******/ 
void ReadOutput(struct Net *net, struct NetworkInfo *info, double 
*out); 
 
/**********************************************************************
******* 
*  ARM.C 
*  An include file for simulating a 2-D revolute robotic arm with 
arbitrary 
*  number of links 
*  by Wallace Kelly 
*  January 20, 1994 
***********************************************************************
******/ 
#include <stdio.h> 
#include <stdlib.h> 
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#include <math.h> 
#include <graphics.h> 
 
#include "fnn.h" 
#include "farm.h" 
 
/**********************************************************************
******* 
* Initialize the link data structure for an arm 
***********************************************************************
******/ 
struct Link *IniLinks(void) 
{ 
 struct Link *links; 
 
 links = MemAlloc(sizeof(struct Link)); 
 if(links == NULL) return NULL; 
 
 links->len = 0;   /* Necessary for the AddLink function */ 
 links->next = NULL; 
 return links; 
} 
 
/**********************************************************************
******* 
*   Add a link to a link struct 
***********************************************************************
******/ 
int AddLink(struct Link *links, double len, double theta, 
    double max_theta, double min_theta) 
{ 
 struct Link *l; 
 double phi = 0; 
 l = links; 
 
 if(len == 0) { 
  printf("\nError: Link lengths of zero not permitted.\n"); 
  return FAILURE; } 
 
 /* This section for arms with links already existing */ 
 if(l->len != 0) { 
  while (l->next != NULL) 
   l = l->next; /* Advance pointer to last existing link */ 
 
  phi = l->phi;  /* Stored to calculate new link's phi */ 
  l->next = MemAlloc(sizeof(struct Link)); 
  if(l->next == NULL) return FAILURE; 
 
  l = l->next; } 
 
 /* Insert link parameters in to the data structure */ 
 l->len = len; 
 l->theta = theta; 
 l->phi = fmod( phi + theta, pi2); 
 l->max_theta = max_theta; 
 l->min_theta = min_theta; 
 l->next = NULL; 
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 return SUCCESS; 
}; 
 
/**********************************************************************
******* 
* Set the 'linknum' joint to 'theta' degrees 
***********************************************************************
******/ 
int SetLink(struct Link *links, int linknum, double theta_norm) 
{ 
 int loop; 
 double temp = 0, theta; 
 struct Link *l; 
 l = links; 
 
 /* Advance to the 'linknum' joint and sum heighths */ 
 for(loop = 0; loop < linknum; loop = loop + 1) { 
  temp = l->phi; 
  if(l->next != NULL) l = l->next;  } 
 
 theta = theta_norm * (l->max_theta - l->min_theta) + l->min_theta; 
 if(theta > l->max_theta) theta = l->max_theta; 
 if(theta < l->min_theta) theta = l->min_theta; 
 
 l->theta = theta; 
 
 for(; l!=NULL; l=l->next) {  /* Recalculate phi's all the way to the 
tip */ 
  l->phi = fmod( temp + l->theta, pi2); 
  temp = l->phi; } 
 
 return SUCCESS; 
} 
 
/**********************************************************************
******* 
* Move the 'linknum' joint by 'd_theta' degrees 
***********************************************************************
******/ 
int MoveLink(struct Link *links, int linknum, double d_theta) 
{ 
 int loop; 
 double y = 0, angle = 0; /* New height and angle for the joints */ 
 struct Link *ltemp, *l; 
 l = links; 
 
 /* Advance to the 'linknum' joint and sum heighths */ 
 for(loop = 0; loop < linknum; loop = loop + 1) { 
  y = y + l->len * sin( l->phi ); 
  if(l->next != NULL) l = l->next;  } 
 
 /* Test a Cartesian constraint that each joint's y > 0 */ 
 ltemp = l; 
 for(; ltemp!=NULL; ltemp = ltemp->next)  { 
  y = y + ltemp->len * sin( ltemp->phi + d_theta ); 
  if(y < 0.0) return FAILURE; } 



80 

 

 
 /* Test angle constraint of the joint to be moved */ 
 ltemp = l; 
 angle = fmod( ltemp->theta + d_theta, pi2); 
 if(angle > ltemp->max_theta) d_theta = ltemp->max_theta - ltemp-
>theta; 
 if(angle < ltemp->min_theta) d_theta = ltemp->min_theta - ltemp-
>theta; 
 
 
 /* Physical limits won't be exceeded, OK, make changes to data */ 
 l->theta = fmod( l->theta + d_theta, pi2); 
 for(; l!=NULL; l=l->next)  /* Recalculate phi's all the way to the 
tip */ 
  l->phi = fmod( l->phi + d_theta, pi2); 
 
 return SUCCESS; 
} 
 
/**********************************************************************
******* 
* Move to a location taking into account the aspect ratio and Y axis 
***********************************************************************
******/ 
void MoveTo(int x, int y) 
{ 
 moveto(x*4/3, -y); 
} 
 
/**********************************************************************
******* 
* Draw to a location taking into account the aspect ratio and Y axis 
***********************************************************************
******/ 
void LineTo(int x, int y) 
{ 
 lineto(x*4/3, -y); 
} 
 
/**********************************************************************
******* 
* Draw the arm 
***********************************************************************
******/ 
void DrawArm(struct Link *links, int color) 
{ 
 int x=0, y=0; /* Assumes base is at (0, 0) */ 
 struct Link *l; 
 
 setcolor(color); 
 MoveTo(x, y); 
 for(l = links; l!=NULL; l = l->next) { 
  x += l->len * cos(l->phi); 
  y += l->len * sin(l->phi); 
  LineTo(x, y); 
  } 
} 
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/**********************************************************************
******* 
*  Calculates the Cartesian coordinates of the end-effector 
***********************************************************************
******/ 
void EndEffector (struct Link *links, struct complex *p) 
{ 
 struct Link *l; 
 
 if(!p) {printf("ERROR in programming EndEffector()");  exit(1); } 
 
 p->x = 0; 
 p->y = 0; 
 
 for(l = links; l!=NULL; l = l->next)  { 
  p->x = p->x + l->len * cos (l->phi); 
  p->y = p->y + l->len * sin (l->phi); } 
 
 return; 
} 
 
/**********************************************************************
******* 
*  Determine if the arm is intersecting with an object 
***********************************************************************
******/ 
int Collision(struct Link *links, struct Point *obstacle, double 
margin) 
{ 
 double d, d12, d10, d02, d12a, d12b, t0, t1, t2; 
 struct Link *l; 
 struct complex p0, p1, p2; 
 struct Point p; 
 
 Pol2Rec(obstacle, &p0); 
 p1.x = 0; 
 p1.y = 0; 
 
 for(l = links; l!=NULL; l = l->next)  { 
  p.rho = l->len; 
  p.phi = l->phi; 
  Pol2Rec(&p, &p2); 
 
  p2.x += p1.x; 
  p2.y += p1.y; 
 
  d12 = Distance(&p1, &p2); 
  d10 = Distance(&p1, &p0); 
  d02 = Distance(&p0, &p2); 
 
  t1 = acos( (d12 * d12 + d10 * d10 - d02 * d02) / (2 * d12 * d10)); 
  t2 = acos( (d12 * d12 + d02 * d02 - d10 * d10) / (2 * d12 * d02)); 
 
  d = d10 * sin(t1);   /* distance from obstacle's center to the 
link */ 
  if(t1 > M_PI_2) d = d10; 
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  if(t2 > M_PI_2) d = d02; 
 
  if(d < margin) return ON; 
 
  p1.x = p2.x; p1.y = p2.y;  } 
 
  return OFF; 
} 
 
/**********************************************************************
******* 
* Copy the current state into an array 
***********************************************************************
******/ 
void GetState(double *state, struct Link *links, struct Point *goal, 
struct Point *obstacle) 
{ 
 int index = 1; 
 double x1, y1, x2, y2; 
 struct Link *l; 
 struct complex end; 
 struct complex g, o; 
 
 Pol2Rec(goal, &g); 
 Pol2Rec(obstacle, &o); 
 
 for(l = links; l!=NULL; l=l->next)  { 
  state[index] = (l->theta - l->min_theta)/(l->max_theta - l-
>min_theta); 
  index++;  } 
 
 EndEffector(links, &end); 
 x1 = (g.x - end.x) / (2.0 * MAXLEN) + 0.5; 
 state[index] = x1; 
 index++; 
 
 y1 = (g.y - end.y) / MAXLEN + 0.5; 
 state[index] = y1; 
 index++; 
 
 x2 = (o.x - end.x) / (2.0 * MAXLEN) + 0.5; 
 state[index] = x2; 
 index++; 
 
 y2 = (o.y - end.y) / MAXLEN + 0.5; 
 state[index] = y2; 
 index++; 
 
 return; 
} 
 
/**********************************************************************
******** 
*  OBJECTS.C 
*  source code for the objects -- both the goal and obstacle 
*  by Wallace E. Kelly, III 
*  revision on June 16, 1994 



83 

 

***********************************************************************
*******/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <graphics.h> 
 
#include "fnn.h" 
#include "farm.h" 
 
/**********************************************************************
******* 
*  Draw a circle to simulate an obstacle or goal 
***********************************************************************
******/ 
void Circle(double x, double y, double radius, int color) 
{ 
 setcolor(color); 
 circle(x * 4 / 3, - y, radius); 
} 
 
/**********************************************************************
******* 
*  The function, radius and color for a goal 
***********************************************************************
******/ 
void DrawGoal(struct Point *g) 
{ 
 int radius = 10; 
 int color = EGA_LIGHTGREEN; 
 double x, y; 
 
 x = cos(g->phi) * g->rho; 
 y = sin(g->phi) * g->rho; 
 
 Circle(x, y, radius, color); 
 setfillstyle(SOLID_FILL, color); 
 floodfill(x * 4 / 3, -y, color); 
} 
 
/**********************************************************************
******* 
*  The function, radius and color for an obstacle 
***********************************************************************
******/ 
void DrawObstacle(struct Point *o) 
{ 
 int radius = 10; 
 int color = EGA_LIGHTRED; 
 double x, y; 
 
 x = cos(o->phi) * o->rho; 
 y = sin(o->phi) * o->rho; 
 
 Circle(x, y, radius, color); 
} 
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/**********************************************************************
******** 
*  Generate a random number between min and max 
***********************************************************************
*******/ 
double Random(double min, double max) 
{ 
 double n; 
 n = ((double)(rand()) / (double)RAND_MAX) * (max - min) + min; 
 return n; 
} 
 
/**********************************************************************
******* 
* Returns the distance between two points 
***********************************************************************
******/ 
double Distance(struct complex *p1, struct complex *p2) 
{ 
 double d; 
 
 d = (double)( (double)(p1->x - p2->x) * (double)(p1->x - p2->x) 
    + (double)(p1->y - p2->y) * (double)(p1->y - p2->y)); 
 d = sqrt(d); 
 return d; 
} 
 
/**********************************************************************
******** 
*  Return the distance between to polar points 
***********************************************************************
*******/ 
double PDistance(struct Point *p1, struct Point *p2) 
{ 
 struct complex rp1, rp2; 
 
 rp1.x = p1->rho * cos(p1->phi); 
 rp1.y = p1->rho * sin(p1->phi); 
 rp2.x = p2->rho * cos(p2->phi); 
 rp2.y = p2->rho * sin(p2->phi); 
 
 return Distance(&rp1, &rp2); 
} 
 
/**********************************************************************
******** 
*  Determine the rectangular equivalent of a polar coordinate 
***********************************************************************
*******/ 
void Pol2Rec(struct Point *p, struct complex *r) 
{ 
 if(!p || !r) {printf("ERROR in programming Pol2Rec."); exit(1); } 
 
 r->x = p->rho * cos(p->phi); 
 r->y = p->rho * sin(p->phi); 
} 
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NEURO-FUZZY ENGINE 

/**********************************************************************
******** 
*  NN1.C 
*  the basic initialization routines for a BPN 
*  by Wallace Kelly 
*  February 9, 1994 
***********************************************************************
*******/ 
#include <stdio.h> 
#include <stdlib.h> 
 
#include "fnn.h" 
 
/**********************************************************************
******** 
*  Initialize the nodes in a layer 
***********************************************************************
*******/ 
struct Node *IniNodes(int nodes_prev, int numnodes) 
{ 
 int loop, loop2; 
 struct Node *nodes = NULL; 
 
 nodes = MemAlloc(sizeof(struct Node) * numnodes); 
 
 for(loop = 0; loop<numnodes; loop++)  { 
  nodes[loop].win = MemAlloc(sizeof(double) * nodes_prev); 
  nodes[loop].winlast = MemAlloc(sizeof(double) * nodes_prev); 
  for(loop2 = 0; loop2 < nodes_prev; loop2++) { 
   nodes[loop].win[loop2] = 0; 
   nodes[loop].winlast[loop2] = 0; } 
  nodes[loop].numweights = nodes_prev; 
  nodes[loop].sum = 0; 
  nodes[loop].output = 0; 
  nodes[loop].error = 0;  } 
 
 return nodes; 
} 
 
/**********************************************************************
******** 
*  Initialize the layers in a network 
***********************************************************************
*******/ 
struct Layer *IniLayers(int numlayers, int *numnodes) 
{ 
 int loop, prev; 
 struct Layer *layers = NULL; 
 
 layers = MemAlloc(sizeof(struct Layer) * numlayers); 
 
 for(loop = 0; loop < numlayers; loop++)  { 
  layers[loop].numnodes = numnodes[loop]; 
  prev = numnodes[loop-1]; 
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  if(loop == 0) prev = 0; 
  layers[loop].nodes = IniNodes(prev, numnodes[loop]);  } 
 
 return layers; 
} 
 
/**********************************************************************
******** 
*  Initialize a neural network 
***********************************************************************
*******/ 
struct Net *IniNet(int numlayers, int *numnodes) 
{ 
 struct Net *net = NULL; 
 
 net = MemAlloc(sizeof (struct Net)); 
 
 net->numlayers = numlayers; 
 net->layers = IniLayers(numlayers, numnodes); 
 return net; 
} 
 
/**********************************************************************
******** 
*  Input the values in an array into the input layer's output 
***********************************************************************
*******/ 
void InputArray(double *array, struct Net *net) 
{ 
 int loop, numnodes; 
 struct Node *node = NULL; 
 
 numnodes = net->layers[0].numnodes; 
 if(array[0] != numnodes) { 
  printf("\nThe input array is the wrong dimension for this neural 
network.\n"); 
  exit(1);  } 
 
 node = net->layers[0].nodes; 
 for(loop = 0; loop < numnodes; loop++) 
  node[loop].output = array[loop+1]; 
} 
 
/**********************************************************************
******** 
*  FNN_IO.C 
*  Input/output functions 
*  by Wallace Kelly 
*  February 9, 1994 
*  adapted for fuzzy on 2/22/94 
*  revision on 5/17/94 for more flexibility 
*  revision on 6/14/94 for minor changes 
***********************************************************************
*******/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
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#include <math.h> 
#include <alloc.h> 
#include <graphics.h> 
 
#include "fnn.h" 
 
/**********************************************************************
******** 
*  Input a string, and attach a default extension if necessary 
***********************************************************************
*******/ 
char *GetFileName(const char *string) 
{ 
 int done=YES; 
 char *filename = NULL, dot = '.', space = ' ', *ext = ".DAT"; 
 
 do { 
  printf("\nEnter the name of the file %s: ", string); 
  filename = MemAlloc(sizeof(char)*MAXFILENAME); 
  strupr(gets(filename)); 
 
  if(strlen(filename) == 0) { 
   Free(filename); 
   return NULL; } 
 
  if(strchr(filename, space)) { 
   done = NO; 
   printf("\nInvalid filename.\n"); 
   Free(filename); 
   } } while(!done); 
 
 if(!strchr(filename, dot)) strcat(filename, ext); 
 return filename; 
} 
 
/**********************************************************************
******** 
*  fopen function with advantage of error catching, etc 
***********************************************************************
*******/ 
FILE *Fopen(char *filename, int m) 
{ 
 char mode; 
 FILE *fp = NULL; 
 
 /* Determine the mode code */ 
 switch(m) { 
  case READ:  mode = 'r'; break; 
  case WRITE: mode = 'w'; break; 
  case APPEND: mode = 'a'; break; 
  default: printf("\nError in call to Fopen().\n"); 
     exit(1);  }; 
 
 fp = fopen(filename, &mode); 
 if(!fp) { 
  printf("\nError opening a file: %s\n", filename); 
  exit(1);  } 
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 return fp; 
} 
 
/**********************************************************************
******** 
* Print the values of the outputs of the last neurons 
***********************************************************************
*******/ 
void ShowOutput(struct Net *net, struct NetworkInfo *info) 
{ 
 int loop, numnodes; 
 double *fuzzy, *defuzzified; 
 struct Layer *layer = NULL; 
 struct Node *node = NULL; 
 
 layer =  net->layers; 
 loop = net->numlayers - 1; 
 numnodes = layer[loop].numnodes; 
 
 fuzzy = MemAlloc(sizeof(double) * (numnodes+1)); 
 fuzzy[0] = numnodes; 
 
 defuzzified = MemAlloc(sizeof(double) * (info->numoutputs+1)); 
 defuzzified[0] = info->numoutputs; 
 
 node = layer[loop].nodes; 
 
 for(loop = 1; loop <= numnodes; loop++) 
  fuzzy[loop] = node[loop-1].output; 
 
 Defuzzify(fuzzy, defuzzified, info->output_max); 
 for(loop = 1; loop <= defuzzified[0]; loop++) 
  printf("%0.8lf ", defuzzified[loop]); 
 printf("\n"); 
} 
 
/**********************************************************************
******** 
*  Store the neural network weights in a file 
***********************************************************************
*******/ 
void StoreWeights(char *filename, struct Net *net) 
{ 
 int loop, loop2, loop3; 
 struct Node *node = NULL; 
 struct Layer *layer = NULL; 
 FILE *fp = NULL; 
 
 if(filename != NULL) { 
  fp = Fopen(filename, WRITE); 
 
  for(loop = 0; loop < net->numlayers; loop++)  { 
   layer =  net->layers; 
   for(loop2 = 0; loop2 < layer[loop].numnodes; loop2++)  { 
    node = layer[loop].nodes; 
    for(loop3 = 0; loop3 < node[loop2].numweights; loop3++) 



89 

 

     fprintf(fp, "%+0.8lf %+0.8lf\n", node[loop2].win[loop3], 
node[loop2].winlast[loop3]);  } } 
 
 fclose(fp);  } 
} 
 
/**********************************************************************
******** 
*  Load the neural network weights from a file 
***********************************************************************
*******/ 
void LoadWeights(char *filename, struct Net *net) 
{ 
 int loop, loop2, loop3; 
 struct Node *node = NULL; 
 struct Layer *layer = NULL; 
 FILE *fp = NULL; 
 
 fp = Fopen(filename, READ); 
 
 for(loop = 1; loop < net->numlayers; loop++)  { 
  layer =  net->layers; 
  for(loop2 = 0; loop2 < layer[loop].numnodes; loop2++)  { 
   node = layer[loop].nodes; 
   for(loop3 = 0; loop3 < node[loop2].numweights; loop3++) 
    if(  fscanf(fp, "%lf %lf", &node[loop2].win[loop3], 
&node[loop2].winlast[loop3] ) == 0) { 
      printf("\nError loading weights from file %s", filename); 
      exit(1);  } } } 
 fclose(fp); 
} 
 
/**********************************************************************
******** 
*  Read an array of size numbers 
***********************************************************************
*******/ 
int DoubleIn(FILE *fp, double *a, int size) 
{ 
 int flag = 1, loop; 
 
 if(feof(fp)) flag = 0; 
 
 a[0] = size; 
 for(loop = 1; loop <= size; loop++) 
  flag = (fscanf(fp, "%lf\n", &a[loop]) && (flag)); 
 
 if(!flag) rewind(fp); 
 return flag; 
} 
 
/**********************************************************************
******** 
*  Read the network information from the network info file 
***********************************************************************
*******/ 
struct NetworkInfo *GetNetInfo(FILE *fp) 



90 

 

{ 
 int flag = 0, flag1 = 0, flag2 = 0, loop, loop2; 
 char buf[255], *equal = "=", *space = " ", *cr = "\n", *value, 
*value2; 
 struct NetworkInfo *info; 
 
 char *numinputs = "inputs"; 
 char *numoutputs = "outputs"; 
 char *numhidlayers = "hidden"; 
 char *numhidnodes = "hidnodes"; 
 char *alpha = "alpha"; 
 char *beta = "beta"; 
 char *gamma = "gamma"; 
 char *input = "input_file"; 
 char *samples = "samples_file"; 
 char *desired = "desired_file"; 
 char *weights = "weights_file"; 
 char *error = "error_file"; 
 char *epochs = "epochs"; 
 char *maxerror = "maxerror"; 
 char *input_values = "input_values"; 
 char *output_values = "output_values"; 
 char *input_max = "input_max"; 
 char *output_max = "output_max"; 
 
 
 info = MemAlloc(sizeof(struct NetworkInfo)); 
 
 while(fgets(buf, 255, fp) != NULL) { 
  strlwr(buf); 
  strtok(buf, equal); 
  value = strtok(NULL, cr); 
 
  if(strequ(buf, numinputs))  { 
   info->numinputs = atoi(value); 
   flag1 = 1;  } 
 
  if(strequ(buf, numoutputs))  { 
   info->numoutputs = atoi(value); 
   flag2 = 1;  } 
 
  if(strequ(buf, numhidlayers)) { 
   info->numhidlayers = atoi(value); 
   flag = 1;  } 
 
  if(strequ(buf, numhidnodes)) { 
   if(flag == 0) { 
    printf("\nERROR: The 'numhidnodes='line should come after 
'numhidlayers='\n"); 
    exit(1);  } 
   info->numhidnodes = MemAlloc(sizeof(int)* info->numhidlayers); 
   for(loop = 0; loop < info->numhidlayers; loop++)  { 
    value2 = strtok(value, space); 
    info->numhidnodes[loop] = atoi(value2); 
    value = NULL;  }  } 
 
  if(strequ(buf, alpha)) info->alpha = atoi(value); 
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  if(strequ(buf, beta)) info->beta = atof(value); 
 
  if(strequ(buf, gamma)) info->gamma = atof(value); 
 
  if(strequ(buf, input))  { 
   info->input = MemAlloc(sizeof(char) * (strlen(value)+1)); 
   strcpy(info->input, value);  } 
 
  if(strequ(buf, samples)) { 
   info->samples = MemAlloc(sizeof(char) * (strlen(value) + 1)); 
   strcpy(info->samples, value);  } 
 
  if(strequ(buf, desired))  { 
   info->desired = MemAlloc(sizeof(char) * (strlen(value)+1)); 
   strcpy(info->desired, value);  } 
 
  if(strequ(buf, weights)) { 
   info->weights = MemAlloc(sizeof(char) * (strlen(value)+1)); 
   strcpy(info->weights, value);  } 
 
  if(strequ(buf, error)) { 
   info->error = MemAlloc(sizeof(char) * (strlen(value)+1)); 
   strcpy(info->error, value);  } 
 
  if(strequ(buf, epochs)) info->epochs = atoi(value); 
 
  if(strequ(buf, maxerror)) info->maxerror = atof(value); 
 
  if(strequ(buf, input_values)) { 
   if(!flag1) { 
    printf("MEMBERSHIP ERROR: The inputs= must precede 
inputs_values="); 
    exit(1);  } 
   flag1=2; 
   info->input_values = MemAlloc(sizeof(int)* (info->numinputs+1)); 
   info->input_values[0] = info->numinputs; 
   for(loop = 1; loop <= info->numinputs; loop++)  { 
    value2 = strtok(value, space); 
    info->input_values[loop] = atoi(value2); 
    value = NULL;  }  } 
 
  if(strequ(buf, output_values)) { 
   if(!flag2) { 
    printf("MEMBERSHIP ERROR: The inputs= must precede 
inputs_values="); 
    exit(1);  } 
   flag2=2; 
   info->output_values = MemAlloc(sizeof(int)* (info-
>numoutputs+1)); 
   info->output_values[0] = info->numoutputs; 
   for(loop = 1; loop <= info->numoutputs; loop++)  { 
    value2 = strtok(value, space); 
    info->output_values[loop] = atoi(value2); 
    value = NULL;  }  } 
 
  if(strequ(buf, input_max)) { 
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   if(flag1!=2) { 
    printf("MEMBERSHIP ERROR: The input_values= must precede 
input_max="); 
    exit(1);  } 
   info->input_max = MemAlloc(sizeof(double*) * info->numinputs); 
   for(loop2 = 0; loop2 < info->numinputs; loop2++)  { 
    fgets(buf, 255, fp); 
    strlwr(buf); 
    value = buf; 
    info->input_max[loop2] = 
MemAlloc(sizeof(double)*(input_values[0]+1)); 
    info->input_max[loop2][0] = info->input_values[loop2+1]; 
    for(loop = 1; loop <= info->input_values[loop2+1]; loop++)  { 
     value2 = strtok(value, space); 
     info->input_max[loop2][loop] = atof(value2); 
     value = NULL;  }  }  } 
 
  if(strequ(buf, output_max)) { 
   if(flag2!=2) { 
    printf("MEMBERSHIP ERROR: The output_values= must precede 
output_max="); 
    exit(1);  } 
   info->output_max = MemAlloc(sizeof(double*) * info->numoutputs); 
   for(loop2 = 0; loop2 < info->numoutputs; loop2++)  { 
    fgets(buf, 255, fp); 
    strlwr(buf); 
    value = buf; 
    info->output_max[loop2] = 
MemAlloc(sizeof(double)*(output_values[0]+1)); 
    info->output_max[loop2][0] = info->output_values[loop2+1]; 
    for(loop = 1; loop<=info->output_values[loop2+1]; loop++)  { 
     value2 = strtok(value, space); 
     info->output_max[loop2][loop] = atof(value2); 
     value = NULL; }  }  } } 
 
 /* calculate number of layers and nodes */ 
 info->numlayers = info->numhidlayers+2; 
 info->numnodes = MemAlloc(sizeof(int) * info->numlayers); 
 
 /* count input nodes */ 
 info->numnodes[0] = 0; 
 for(loop=1; loop<=info->input_values[0]; loop++) 
  info->numnodes[0] += info->input_values[loop]; 
 
 /* count hidden nodes */ 
 for(loop=1; loop<=info->numhidlayers; loop++) 
  info->numnodes[loop] = info->numhidnodes[loop-1]; 
 
 /* count output nodes */ 
 info->numnodes[info->numlayers-1] = 0; 
 for(loop=1; loop<=info->output_values[0]; loop++) 
  info->numnodes[info->numlayers-1] += info->output_values[loop]; 
 
 return info; 
} 
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/**********************************************************************
******** 
*   malloc function with the advantage of error catching 
***********************************************************************
*******/ 
void *MemAlloc(size_t size) 
{ 
 void *ptr = NULL; 
 if(size != 0) { 
  ptr = malloc(size); 
  if (!ptr) { 
   printf("\nOut of memory error.\n"); 
   exit(1);  }  } 
 return ptr; 
} 
 
/**********************************************************************
******** 
* free function with benefit of nulling pointers 
***********************************************************************
*******/ 
void Free(void *ptr) 
{ 
 if(ptr) 
  free(ptr); 
 ptr = NULL; 
} 
 
/**********************************************************************
******* 
* Graphics function 
***********************************************************************
******/ 
int InitializeScreen(void) 
{ 
  /* Settings for paging */ 
 int gdriver = VGA, gmode = VGAMED, gerr; 
 
  registerbgidriver(EGAVGA_driver); 
  initgraph(&gdriver, &gmode, ""); 
  gerr = graphresult(); 
  if(gerr != grOk)  { 
 printf("BGI error: %s\n", grapherrormsg(gerr)); 
 return(gerr);} 
 
  /* Redefine coordinate system by moving viewport */ 
  setviewport(getmaxx()/2, getmaxy(), getmaxx(), getmaxy(), CLIPOFF); 
  setlinestyle(SOLID_LINE, 0, NORM_WIDTH); 
  return 0; 
} 
 
/**********************************************************************
******** 
* Return the output of the network 
***********************************************************************
*******/ 
void ReadOutput(struct Net *net, struct NetworkInfo *info, double *out) 
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{ 
 int loop, numnodes; 
 double *fuzzy; 
 struct Layer *layer = NULL; 
 struct Node *node = NULL; 
 
 layer =  net->layers; 
 loop = net->numlayers - 1; 
 numnodes = layer[loop].numnodes; 
 if (out[0] != info->numoutputs) {printf("ERROR in programming 
ReadOutput."); exit(1); } 
 
 fuzzy = MemAlloc(sizeof(double) * (numnodes+1)); 
 fuzzy[0] = numnodes; 
 
 node = layer[loop].nodes; 
 for(loop = 1; loop <= numnodes; loop++) 
  fuzzy[loop] = node[loop-1].output; 
 
 Defuzzify(fuzzy, out, info->output_max); 
 Free(fuzzy); 
} 
 
/**********************************************************************
******** 
*  FNN_BPN.C 
*  the basic neural network include file for BPNs 
*  by Wallace Kelly 
*  February 9, 1994 
*  adapted for fuzzy 2/22/94 
*  revision on 5/17/94 to add flexibility 
*  revision on 6/14/94 for minor changes 
***********************************************************************
*******/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <conio.h> 
 
#include "fnn.h" 
 
/**********************************************************************
******** 
*  Global variables:    activation constant, alpha 
*                             learning rate, beta 
*                     and momentum constant, gamma 
***********************************************************************
*******/ 
double alpha, beta, gamma; 
void BPN_Constants(double a, double b, double g) 
{ 
 alpha = a; 
 beta = b; 
 gamma = g; 
} 
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/**********************************************************************
******** 
*  The activiation function 
***********************************************************************
*******/ 
double Activation(double x) 
{ 
 double y; 
 y = 1 / (1 + exp(- alpha *x)); 
 return y; 
} 
 
/**********************************************************************
******** 
*  Perform the forward propagation 
***********************************************************************
*******/ 
void RunNN(struct Net *net) 
{ 
 int loop, loop2, loop3; 
 struct Layer *layer = NULL; 
 struct Node *node = NULL, *nodeprev = NULL; 
 
 for(loop = 1; loop < net->numlayers; loop++)  { 
  layer =  net->layers; 
  for(loop2 = 0; loop2 < layer[loop].numnodes; loop2++)  { 
   node = layer[loop].nodes; 
   nodeprev = layer[loop-1].nodes; 
   node[loop2].sum = 0; 
   for(loop3 = 0; loop3 < node[loop2].numweights; loop3++) 
    node[loop2].sum += nodeprev[loop3].output * 
node[loop2].win[loop3]; 
   node[loop2].output = Activation(node[loop2].sum);   } } 
} 
 
/**********************************************************************
******** 
*  Perform the backpropagation 
***********************************************************************
*******/ 
void BackPropagate(double *desired, struct Net *net) 
{ 
 int loop, loop2, loop3, numlayers, numnodes, numnodesprev; 
 double output, sum, temp; 
 struct Layer *layer = NULL; 
 struct Node *node = NULL, *nodeprev = NULL; 
 
 /* set layer and node variables to the last layer */ 
 numlayers = net->numlayers; 
 layer = net->layers; 
 numnodes = layer[numlayers-1].numnodes; 
 node = layer[numlayers-1].nodes; 
 
 /* calulate error on output layer */ 
 for(loop2 = 0; loop2 < numnodes; loop2++)  { 
  output = node[loop2].output; 
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  node[loop2].error = output * (1 - output) * (desired[loop2+1] - 
output); } 
 
 /* calculate error in hidden nodes */ 
 for(loop = numlayers-1; loop > 1; loop--)  { 
  numnodes = layer[loop].numnodes; 
  numnodesprev = layer[loop-1].numnodes; 
  node = layer[loop].nodes; 
  nodeprev = layer[loop-1].nodes; 
  for(loop2 = 0; loop2 < numnodesprev; loop2++)  { 
   sum = 0; 
   output = nodeprev[loop2].output; 
   for(loop3 = 0; loop3 < numnodes; loop3++) 
    sum += node[loop3].error * node[loop3].win[loop2]; 
   nodeprev[loop2].error = output * (1 - output) * sum;  }  } 
 
 /* adjust the weights */ 
 for(loop = numlayers-1; loop>0; loop--)  { 
  numnodes = layer[loop].numnodes; 
  numnodesprev = layer[loop-1].numnodes; 
  node = layer[loop].nodes; 
  nodeprev = layer[loop-1].nodes; 
  for(loop2 = 0; loop2 < numnodesprev; loop2++)  { 
   for(loop3 = 0; loop3 < numnodes; loop3++)  { 
    temp = node[loop3].win[loop2]; 
    node[loop3].win[loop2] = node[loop3].win[loop2] 
     + beta * node[loop3].error * nodeprev[loop2].output 
     + gamma * (temp - node[loop3].winlast[loop2]); 
    node[loop3].winlast[loop2] = temp; } } } 
} 
 
/**********************************************************************
******** 
*  Calculate the root mean square error of an input 
***********************************************************************
*******/ 
double ErrorNN(double *inputs, double *desired, struct Net *net, struct 
NetworkInfo *info) 
{ 
 int loop2; 
 double error = 0, *defuzzified, *fuzzified, *fuzzy; 
 struct Layer *layer= NULL; 
 struct Node *node = NULL; 
 
 layer = net->layers; 
 node = layer[net->numlayers - 1].nodes; 
 
 fuzzified = MemAlloc(sizeof(double) * (layer[0].numnodes+1)); 
 fuzzified[0] = layer[0].numnodes; 
 
 fuzzy = MemAlloc(sizeof(double) * (layer[net->numlayers - 
1].numnodes+1)); 
 fuzzy[0] = layer[net->numlayers - 1].numnodes; 
 
 defuzzified = MemAlloc(sizeof(double) * (info->numoutputs +1)); 
 defuzzified[0] = info->numoutputs; 
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 Fuzzify(inputs, fuzzified, info->input_max); 
 InputArray(fuzzified, net); 
 RunNN(net); 
 
 for(loop2 = 1; loop2 <= fuzzy[0]; loop2++) 
  fuzzy[loop2] = node[loop2-1].output; 
 Defuzzify(fuzzy, defuzzified, info->output_max); 
 for(loop2 = 0; loop2 < defuzzified[0]; loop2++) 
  error += pow((defuzzified[loop2+1] - desired[loop2+1]), 2.0); 
 
 error = sqrt(error / defuzzified[0]); 
 
 Free(defuzzified); 
 Free(fuzzy); 
 Free(fuzzified); 
 
 return error; 
} 
 
/**********************************************************************
******** 
*  FUZZIFY.C 
*  code to fuzzify input to a neural network 
*  by Wallace Kelly 
*  2/22/94 
*  revision 5/17/94 added MembershipInfo file 
*  revision 6/14/94 minor changes 
***********************************************************************
*******/ 
#include <stdio.h> 
#include <stdlib.h> 
 
#include "fnn.h" 
 
/**********************************************************************
******** 
* Fuzzify the values of an array 
***********************************************************************
*******/ 
void Fuzzify(double *in, double *fuzzified, double **max_points) 
{ 
 int loop, loop2, k=0; 
 double **m; 
 
 m = max_points; 
 
 /* initialize all the membership values to zero */ 
 for(loop = 1; loop <= fuzzified[0]; loop++) 
  fuzzified[loop] = 0; 
 
 /* step through all the crisp inputs */ 
 for(loop = 1; loop <= in[0]; loop++)  { 
 
  /* if the fuzzifier simply passes a crisp value through... */ 
  if(m[loop-1][0] == 1) { k++; fuzzified[k] = in[loop];  } 
 
  /* for the case of membership function defined */ 
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  else { 
   for(loop2=1; loop2<=m[loop-1][0]-1; loop2++)  { 
    k++; 
    if(m[loop-1][loop2] <= in[loop] && m[loop-1][loop2+1] >= 
in[loop])  { 
     fuzzified[k] =  (m[loop-1][loop2+1] - in[loop]) / (m[loop-
1][loop2+1] - m[loop-1][loop2]); 
     fuzzified[k+1] = 1 - fuzzified[k];  }  } 
   k++; }  } 
 return; 
} 
 
/**********************************************************************
******** 
* Defuzzify the values of an array 
***********************************************************************
*******/ 
void Defuzzify(double *f, double *out, double **max_points) 
{ 
 int loop, loop2, k=0; 
 double **m; 
 double sum1, sum2; 
 
 m = max_points; 
 
 for(loop2=1; loop2<=out[0]; loop2++) { 
 
  /* if the defuzzifier simply passes a crisp value...*/ 
  if(m[loop2-1][0] == 1)  { 
   k++; out[loop2] = f[k];  } 
 
  else { 
   sum1 = 0;   sum2 = 0; 
   for(loop=1; loop<=m[loop2-1][0]; loop++)  { 
    k++; 
    sum1 += f[k]; 
    sum2 += f[k] * m[loop2-1][loop];  } 
   out[loop2] = sum2 / sum1; } 
  } 
 
 return; 
} 
 
/**********************************************************************
******** 
*  TRAIN.C 
*  trains a neuro-fuzzy network 
*  by Wallace Kelly 
***********************************************************************
*******/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <string.h> 
#include <conio.h> 
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#include "fnn.h" 
 
main(int argv, char *argc[]) 
{ 
 int flag; 
 unsigned loop, loop2; 
 char *filename = NULL; 
 double *arrays = NULL, *desired = NULL, *fuzzified = NULL, 
*defuzzified = NULL; 
 double error, maxerror, rmserror; 
 struct Net *net = NULL; 
 struct NetworkInfo *info = NULL; 
 FILE *fp = NULL, *fp_in = NULL, *fp_desired = NULL; 
 
/**********************************************************************
******** 
*  Determine the name of the file containing the network information 
***********************************************************************
*******/ 
 clrscr(); 
 if( argv < 2 )  { 
  if( (filename = GetFileName("containing network information")) == 
NULL) 
   exit(1);  } 
 else { 
  filename = MemAlloc(sizeof(char) * strlen(argc[1])); 
  strcpy(filename, argc[1]);  } 
 
/**********************************************************************
******** 
*  Read in the network information 
***********************************************************************
*******/ 
 fp = Fopen(filename, READ); 
 if(!fp) { printf("ERROR opening %s.", filename); exit(1); } 
 info = GetNetInfo(fp); 
 fclose(fp); fp = NULL; 
 Free(filename);  filename = NULL; 
 
/**********************************************************************
******** 
*  Initialize the network, weights, fuzzifiers, arrays, and training 
constants 
***********************************************************************
*******/ 
 net = IniNet(info->numlayers, info->numnodes); 
 LoadWeights(info->weights, net); 
 
 arrays = MemAlloc(sizeof(double) * (info->numinputs +1)); 
 arrays[0] = info->numinputs; 
 
 desired = MemAlloc(sizeof(double) * (info->numoutputs +1)); 
 desired[0] = info->numoutputs; 
 
 fuzzified = MemAlloc(sizeof(double) * (info->numnodes[0]+1)); 
 fuzzified[0] = info->numnodes[0]; 
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 defuzzified = MemAlloc(sizeof(double) * (info->numnodes[info-
>numlayers-1]+1)); 
 defuzzified[0] = info->numnodes[info->numlayers-1]; 
 
 BPN_Constants(info->alpha, info->beta, info->gamma); 
 
/**********************************************************************
******** 
*  Open the files for error, input, and desired data 
***********************************************************************
*******/ 
 fp = Fopen(info->error, APPEND); 
  if(!fp) { printf("Error opening %s", info->error); exit(1);  } 
 fp_in = Fopen(info->samples, READ); 
  if(!fp_in) { printf("Error opening %s", info->samples); exit(1);  } 
 fp_desired = Fopen(info->desired, READ); 
  if(!fp_desired) {printf("Error opening %s", info->desired); 
exit(1); } 
 
/**********************************************************************
******** 
*  The main training loop 
***********************************************************************
*******/ 
 clrscr(); loop = 0; loop2 = 0; error = 0;  maxerror = 0;  rmserror = 
0; 
 
 do { 
 
/**********************************************************************
******** 
*  Read in the state and desired vectors 
***********************************************************************
*******/ 
  flag = DoubleIn(fp_in, arrays, info->numinputs); 
  if(    DoubleIn(fp_desired, desired, info->numoutputs) != flag)  { 
   printf("\nThe input and desired files are of different 
lengths.\n"); 
   exit(1);  } 
 
/**********************************************************************
******** 
*  In the case that the end of the files were reached (flag==0), ... 
***********************************************************************
*******/ 
  if(flag == 0) { 
   if(!kbhit()) 
    fprintf(fp, "%0.8lf %0.8lf\n", maxerror, ( 
sqrt(rmserror/loop))); 
   loop = 0;  loop2++;  error = 0;  maxerror = 0;  rmserror = 0; 
 } 
 
/**********************************************************************
******** 
*  Fuzzify, load, propogate, and backpropogate 
***********************************************************************
*******/ 
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  loop++; 
  printf("\n\nTraining loop #%d.  Input vector #%d.", loop2, loop); 
 
  Fuzzify(arrays, fuzzified, info->input_max); 
  Fuzzify(desired, defuzzified, info->output_max); 
 
  InputArray(fuzzified, net); 
  RunNN(net); 
  BackPropagate(defuzzified, net); 
 
/**********************************************************************
******** 
*  Calculate and show errors 
***********************************************************************
*******/ 
  error = ErrorNN(arrays, desired, net, info); 
  if(maxerror < error) maxerror = error; 
  rmserror += pow(error, 2.0); 
  printf("\nLast Error:    %0.8lf", error); 
  printf("\nMaximum Error: %0.8lf", maxerror); 
  printf("\nRMS Error:     %0.8lf", ( sqrt(rmserror/loop))); 
  gotoxy(1,1); 
 
/**********************************************************************
******** 
*  If keyboard not hit and we haven't exceeded the max iterations, 
continue 
***********************************************************************
*******/ 
  } while( loop2 < info->iterations && !kbhit()); 
 
/**********************************************************************
******** 
*  Do the final housekeeping 
***********************************************************************
*******/ 
 StoreWeights(info->weights, net); 
 fclose(fp); 
 if(kbhit()) getch(); 
 return 0; 
} 

NEURO-FUZZY CONTROL 

/**********************************************************************
******* 
*  FARM.C 
*  Source code for a program to simulate a robotic arm 
*  The arm is simulated as a 3-link revolute arm in 2 dimensions 
*  Physical constraints are included in this model as well 
*  as a goal and obstacle to be avoided. 
*  The arm is controlled by a fuzzy neural network 
*  This simulation does random configurations and returns a histogram 
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*  of the distances from the goal and the percentages of collision free 
*  trajectories, etc... 
*  by Wallace Kelly 
*  March 22, 1994 
*  revision on June 16, 1994 
***********************************************************************
******/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <string.h> 
#include <graphics.h> 
#include <conio.h> 
#include <ctype.h> 
 
#include "fnn.h" 
#include "farm.h" 
 
#define LEN 80 
#define OBJECT_MAX 2.65 
#define OBJECT_MIN 2.25 
#define OBJECT_MARGIN 100 
#define HUNDRED_PERCENT 400 
#define HISTOGRAM_RESOLUTION .05 
#define MAX_MOVES 100 
#define RUNS 100 
 
main(int argv, char *argc[]) 
{ 
 int runs = 0, loop, loop2, pause = ON, drawing = ON, c; 
 int constraints = 0, collisions = 0, success, *histogram; 
 char *filename = NULL, *drawoff = "off"; 
 double *fuzzified = NULL, *defuzzified = NULL; 
 double state[8], delta[4], d, d1, d2, min_distance; 
 struct Net *net = NULL; 
 struct NetworkInfo *info = NULL; 
 struct Link *arm = NULL; 
 struct complex end, g, o; 
 struct Point goal, obstacle; 
 FILE *fp = NULL; 
 
 histogram = MemAlloc(sizeof(int) * (1 / HISTOGRAM_RESOLUTION + 1)); 
 
/**********************************************************************
******** 
*  Determine the name of the file containing the network information 
***********************************************************************
*******/ 
 clrscr(); 
 if( argv < 2 )  { 
  if( (filename = GetFileName("containing network information")) == 
NULL) 
   exit(1);  } 
 else { 
  filename = MemAlloc(sizeof(char) * strlen(argc[1])); 
  strcpy(filename, argc[1]);  } 
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 if( argv == 3) 
  if( strequ(argc[2], drawoff)) { drawing = OFF; pause = OFF; } 
 
/**********************************************************************
******** 
*  Read in the network information 
***********************************************************************
*******/ 
 fp = Fopen(filename, READ); 
 if(!fp)  { printf("ERROR opening %s.", filename); exit(1); } 
 info = GetNetInfo(fp); 
 fclose(fp); fp = NULL; 
 Free(filename); 
 
/**********************************************************************
******** 
*  Check for correct dimensions in FNN specified 
***********************************************************************
*******/ 
 if(info->numinputs != 7) { 
  printf("\nThe fuzzy neural network must have seven inputs."); 
  exit(1);  } 
 if(info->numoutputs != 3) { 
  printf("\nThe fuzzy neural network must have three outputs."); 
  exit(1);  } 
 state[0] = 7; 
 delta[0] = 3; 
 
/**********************************************************************
******** 
*  Initialize the network, weights, fuzzifiers, arrays, and training 
constants 
***********************************************************************
*******/ 
 net = IniNet(info->numlayers, info->numnodes); 
 LoadWeights(info->weights, net); 
 
 fuzzified = MemAlloc(sizeof(double) * (info->numnodes[0]+1)); 
 fuzzified[0] = info->numnodes[0]; 
 
 defuzzified = MemAlloc(sizeof(double) * (info->numnodes[info-
>numlayers-1]+1)); 
 defuzzified[0] = info->numnodes[info->numlayers-1]; 
 
 BPN_Constants(info->alpha, info->beta, info->gamma); 
 for(loop = 0; loop < 20; loop++) 
  histogram[loop] = 0; 
 
/**********************************************************************
******** 
*  Initialize the arm simulation 
***********************************************************************
*******/ 
 randomize(); 
 if(drawing) { 
  InitializeScreen(); 
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  setbkcolor(EGA_BLACK);  } 
 
 /* Initialize the arm */ 
 arm = IniLinks(); 
 AddLink(arm, LEN, 0, M_PI, 0); 
 AddLink(arm, LEN*0.824, 0, M_PI_2, -M_PI_2); 
 AddLink(arm, LEN*0.737, 0, M_PI*0.135, -M_PI*0.135); 
 
/**********************************************************************
******** 
*  The main loop 
***********************************************************************
*******/ 
 clrscr(); 
 
 for(loop = 0; loop < RUNS; loop++)  { 
 
  /* Select random locations for obstacle and goal */ 
  do { 
   obstacle.rho = Random(OBJECT_MIN * LEN, OBJECT_MAX * LEN); 
   obstacle.phi = Random(.1, 3.04); 
   goal.rho = Random(OBJECT_MIN * LEN, OBJECT_MAX * LEN); 
   goal.phi = Random(.1, 3.04); 
   } while(PDistance(&obstacle, &goal) < OBJECT_MARGIN); 
 
  /* Select a random configuration of the arm */ 
  do { 
   SetLink(arm, 0, Random(.25, .75)); 
   SetLink(arm, 1, Random(.25, .75)); 
   SetLink(arm, 2, Random(.25, .75)); 
   EndEffector(arm, &end); 
   } while(end.y < 0 || Collision(arm, &obstacle, 75) || 
Collision(arm, &goal, 75)); 
 
  if(drawing) { 
   cleardevice(); 
   DrawObstacle(&obstacle); 
   DrawGoal(&goal); 
   DrawArm(arm, EGA_YELLOW);  } 
 
  else printf("."); 
 
  min_distance = 9999; 
 
/**********************************************************************
******** 
*  The loop for moving the arm for a given configuration 
***********************************************************************
*******/ 
  for(loop2 = 0; loop2 < MAX_MOVES; loop2++)  { 
   GetState(state, arm, &goal, &obstacle); 
 
   Fuzzify(state, fuzzified, info->input_max); 
   InputArray(fuzzified, net); 
   RunNN(net); 
   ReadOutput(net, info, delta); 
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   if(drawing) DrawArm(arm, EGA_LIGHTGRAY); 
   EndEffector(arm, &end); 
 
   Pol2Rec(&goal, &g); 
   Pol2Rec(&obstacle, &o); 
   d1 = Distance(&end, &g); 
   d2 = Distance(&end, &o); 
   if(d1 < d2) d = d1; 
   else d = d2; 
   if(d1 < min_distance) min_distance = d1; 
 
   success = 1; 
   success = (success && MoveLink(arm, 0, (delta[1]*2 - 1) * d / 
1000)); 
   success = (success && MoveLink(arm, 1, (delta[2]*2 - 1) * d / 
1000)); 
   success = (success && MoveLink(arm, 2, (delta[3]*2 - 1) * d / 
1000)); 
   if(drawing) DrawArm(arm, EGA_YELLOW); 
 
   if(!success) { 
    printf("\a"); 
    loop2 = MAX_MOVES; 
    constraints++; } 
 
   else 
    if(Collision(arm, &obstacle, 10)) { 
     printf("\a"); 
     loop2 = MAX_MOVES; 
     collisions++;  } 
 
   if(d1 / HUNDRED_PERCENT < 0.05) { 
    loop2 = MAX_MOVES;  } 
 
   if(kbhit()) c = tolower(getch()); 
   } 
 if(!Collision(arm, &obstacle, 10) && success) 
  histogram[(int)floor(min_distance / HUNDRED_PERCENT / 
HISTOGRAM_RESOLUTION)]++; 
 
 switch(c) { 
  case 'q': loop = RUNS; pause = OFF; break; 
  case 'f': pause = 1 - pause; c = 0; break;  } 
 
 if(pause || !drawing) c = tolower(getch()); 
 } 
 
/**********************************************************************
******** 
*  Do the final housekeeping 
***********************************************************************
*******/ 
 if(drawing) closegraph(); 
 printf("collisions %0.2lf\n", (double)collisions / (double)RUNS); 
 printf("constraints %0.2lf\n", (double)constraints / (double)RUNS); 
 for(loop = 0; loop < 20; loop++) 
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  printf("%0.2lf %0.2lf\n", (double)loop * HISTOGRAM_RESOLUTION, 
(double)histogram[loop] / (double)RUNS); 
 return 0; 
}
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APPENDIX II 

NEURO-FUZZY ENGINE TESTING 

The programming and debugging of the neuro-fuzzy engine was an extensive process.  

This appendix includes the data from that testing process and verifies the validity of the 

neuro-fuzzy engine shown in Appendix I. 

LINEAR FUNCTION 

The first function used to test the neuro-fuzzy system was y = x.  After 500 training 

epochs, the neuro-fuzzy system produced the output shown in figure A2-1.   
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Figure A2-1.  The performance of the neuro-fuzzy system on a linear function. 
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SINUSOIDAL FUNCTION 

The ability of the neuro-fuzzy system to learn more complex data was tested with the 

function y = sin(x).  Figure A2-2 shows the desired output and the network's output after 

250 training epochs. 
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Figure A2-2.  The performance of the neuro-fuzzy system on a sinusoidal function. 

TWO-DIMENSIONAL FUNCTION 

A programming bug existed in the neuro-fuzzy engine that was not a problem for 

single-input, single-output functions.  Testing with z = x2|sin(y)| revealed the error.  

After correcting the programming bug and training the network for 400 epochs, the 

network learned the function, as shown in figure A2-3. 



102 

 

0
0.2

0.4
0.6

0.8
1

X

0
0.2

0.4
0.6

0.8
1

Y

0

0.2

0.4

0.6

0.8

1

Z

 

0
0.2

0.4
0.6

0.8
1

X

0
0.2

0.4
0.6

0.8
1

Y

0.0

0.2

0.4

0.6

0.8

1.0

Z

 
Figure A2-3.  The desired output (top) and the actual output for the 2D test data. 

THE LEARNING RATE CONSTANT 

Another important part of any system involving a back propagation neural network is 

the learning rate constant.  The learning rate constant, β, determines how much the 
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weights in the neural network are adjusted as the error is back propagated.  Equation 6 on 

page 10 shows the learning equation used in most BPNs.  The effect of the learning rate 

constant on three training sessions for the sine function is shown in figures A2-4. All 

three training sessions began the networks with the same initial weights.  The training 

error decreases faster for the network with the higher learning rate. 
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Figure A2-4.  The effect of the learning rate constant. 

THE MOMENTUM CONSTANT 

It became apparent during the early stages of this thesis project that the neuro-fuzzy 

system would benefit from the addition of a momentum term in the learning rule.  

Experiments show that the momentum term causes the system to converge more quickly.  

Figure A2-5 is a comparison of the network output after two training sessions that were 

identical except for the inclusion of a momentum term. 
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Figure A2-5.  The effect of the momentum term. 

THE FUZZY MEMBERSHIP FUNCTIONS 

In order to test the fuzzy membership function features, the neuro-fuzzy engine was 

tested for several functions with varying membership function definitions.  Figure A2-6 

reveals the effect of the fuzzy membership function definition on a network training to a 

sinusoidal function.  The "error1" line corresponds to the output error of the network with 

input and output fuzzy membership function definition #1, shown in figure A2-7(a).  The 

plot of "error2" corresponds to definition #2, shown in figure A2-7(b).  The error was less 

for the fuzzifier/defuzzifier with the higher granularity. 
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Figure A2-6.  The effect of the fuzzy membership function definition. 
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Figure A2-7(a).  The fuzzy membership function, test definition #1. 
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Figure A2-7(b).  The fuzzy membership function, test definition #2.
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APPENDIX III 

THE FNN DATA FILES 

This appendix contains the ASCII text files which defined the neuro-fuzzy controllers 

tested in the experiments of Chapter VIII.  Of primary interest is the fuzzy membership 

function definitions.  All the fuzzy membership functions are assumed to be triangular, 

with a heighth of unity, and a peak at the values labeled "input_max" and "output_max." 

 
ARM1.FNN 
inputs=7 
outputs=3 
hidden=1 
hidnodes=35 
alpha=1 
beta=.9 
gamma=.1 
iterations=300 
maxerror=.01 
input_file=input.dat 
samples_file=input.dat 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
input_values=3 3 3 3 3 3 3 
output_values=3 3 3 
input_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
 
ARM2.FNN 
inputs=7 
outputs=3 
hidden=1 
hidnodes=65 
alpha=1 
beta=.9 
gamma=.1 
iterations=300 
maxerror=.01 
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input_file=input.dat 
samples_file=input.dat 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
input_values=7 7 7 7 7 7 7 
output_values=3 3 3 
input_max= 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
 
ARM3.FNN 
inputs=7 
outputs=3 
hidden=1 
hidnodes=30 16 
hidnodes=65 
alpha=1 
beta=.9 
gamma=.1 
iterations=300 
maxerror=.01 
input_file=input.dat 
input_file 
samples_file=input.dat 
samples_file inputs 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
input_values=11 11 11 7 7 7 7 
input_values=7 7 7 7 7 7 7 
output_values=3 3 3 
output_values=3 3 3 
input_max= 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.166 0.333 0.5 0.666 0.833 1.0 
0.0 0.333 0.450 0.5 0.550 0.666 1.0 
0.0 0.333 0.450 0.5 0.550 0.666 1.0 
0.0 0.333 0.450 0.5 0.550 0.666 1.0 
0.0 0.333 0.450 0.5 0.550 0.666 1.0 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
 
ARM4.FNN 
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inputs=7 
outputs=3 
hidden=1 
hidnodes=30 16 
hidnodes=85 
alpha=1 
beta=.9 
gamma=.1 
iterations=300 
maxerror=.01 
input_file=input.dat 
input_file 
samples_file=input.dat 
samples_file inputs 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
input_values=11 11 11 11 11 11 11 
output_values=3 3 3 
input_max= 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
 
ARM5.FNN 
inputs=7 
outputs=3 
hidden=1 
hidnodes=85 
alpha=1 
beta=.9 
gamma=.1 
iterations=300 
maxerror=.01 
input_file=input.dat 
input_file 
samples_file=input.dat 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
input_values=11 11 11 11 11 11 11 
output_values=3 3 3 
input_max= 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.0 0.15 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.85 1.0 
0.0 0.15 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.85 1.0 
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0.0 0.15 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.85 1.0 
0.0 0.15 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.85 1.0 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
 
ARM6.FNN 
inputs=7 
outputs=3 
hidden=1 
hidnodes=100 
alpha=1 
beta=.9 
gamma=.1 
iterations=300 
maxerror=.01 
input_file=input.dat 
samples_file=input.dat 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
input_values=11 11 11 15 15 15 15 
output_values=3 3 3 
input_max= 
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 
0.0 0.07 0.14 0.21 0.28 0.35 0.43 0.50 0.57 0.65 0.72 0.79 0.86 0.93 
1.0 
0.0 0.07 0.14 0.21 0.28 0.35 0.43 0.50 0.57 0.65 0.72 0.79 0.86 0.93 
1.0 
0.0 0.07 0.14 0.21 0.28 0.35 0.43 0.50 0.57 0.65 0.72 0.79 0.86 0.93 
1.0 
0.0 0.07 0.14 0.21 0.28 0.35 0.43 0.50 0.57 0.65 0.72 0.79 0.86 0.93 
1.0 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0 
 
ARM7.FNN 
inputs=7 
outputs=3 
hidden=1 
hidnodes=100 
alpha=1 
beta=.9 
gamma=.1 
iterations=300 
maxerror=.01 
input_file=input.dat 
samples_file=input.dat 
desired_file=output.dat 
weights_file=weights.dat 
error_file=error.dat 
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input_values=11 11 11 15 15 15 15 
output_values=3 3 3 
input_max= 
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 
0.0 0.13 0.24 0.33 0.40 0.45 0.48 0.50 0.52 0.55 0.60 0.67 0.76 0.87 
1.0 
0.0 0.13 0.24 0.33 0.40 0.45 0.48 0.50 0.52 0.55 0.60 0.67 0.76 0.87 
1.0 
0.0 0.13 0.24 0.33 0.40 0.45 0.48 0.50 0.52 0.55 0.60 0.67 0.76 0.87 
1.0 
0.0 0.13 0.24 0.33 0.40 0.45 0.48 0.50 0.52 0.55 0.60 0.67 0.76 0.87 
1.0 
output_max= 
0.0 0.5 1.0 
0.0 0.5 1.0 
0.0 0.5 1.0

 


