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Abstract

The aviation industry stands to benefit from the
technological advances that have come to be known
as soft computing.  This paper describes how soft
computing techniques are being used to improve a
pilot’s situational awareness.  Of particular interest is
the ability of a computer to add value to the raw
sensor data, autonomously monitoring the aircraft’s
situation for possible anomalies in flight management.
This function is performed by the Flight Mode
Interpreter (FMI).  The FMI is a fuzzy inference
module which classifies the current aircraft state into
operational modes.  Examples are included of the
FMI in operation.  Concluding remarks summarize
this written presentation and suggest additional areas
that need to be addressed.

Introduction

The aviation industry stands to benefit from the
technological advances that have come to be known as
soft computing.  In particular, the capability for
increasing a pilot’s situational awareness during a
flight can improve safety and reduce the time required

to train and maintain safe operating skills.  Current
techniques in soft computing can provide real-time
procedural advice and critiques of present
performance.

The authors of this paper are involved in an on-
going avionics research project that has the goal of
embedding a real-time, knowledge-based advisory and
training system into the cockpit of general aviation
aircraft.  Termed ASTRA ©, the Aeronautical Safety
and Training Rules Advisor is a real-world
application of soft computing.

At the heart of this development of a pilot advisory
system is the idea of an aircraft metacontroller
proposed by Painter [1] and demonstrated by Glass
[2].  A metacontroller differs from a flight control
system in that a metacontroller generates high-level
messages for the automatic flight control system auto
pilot.  The metacontroller relies on a computer-
encoded knowledge base to give high level commands
for flying the aircraft.  The knowledge is encoded
using fuzzy logic and expert system rules.  The
original Pilot Advisor and metacontroller concept
were presented in [1].  The idea of a metacontroller
gives a convenient hierarchical structure to the task at
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Figure 1. Pilot advisory system functional architecture.
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hand.
The current state of the research does not pursue

direct control of the aircraft, but rather seeks to aid the
pilot through monitoring and advising.  Figure 1 is a
modification of the original system architecture that
reflects this change in functionality.  The domain of
the encoded knowledge may be safety-related,
navigational in nature, or simply related to aircraft
performance issues.  Such a pilot advisory system is a
valuable step toward increased automation in the
cockpit.

System Architecture

There are four primary components to the current
system architecture.  The pilot and the aircraft are of
course the central members of the overall system.  The
Pilot Advisor (PA) and the Flight Mode Interpreter
(FMI) are the other two primary components.  The PA
serves the function of metacontroller.  The PA and
FMI are basically two software modules running in an
on-board avionics computer.  The Flight Mode
Interpreter is a fuzzy logic system that classifies the
current state of the aircraft into one of eight
operational modes.  The Pilot Advisor is an expert
system that generates messages for the pilot based on
the inferred flight mode, aircraft sensor readings, and
information from the pilot.  A special suite of sensors
is necessary to interface the aircraft to the PC.  A
heads-down display (HDD) and a heads-up display
(HUD) provide an interface to the pilot.

The Pilot Advisor is an expert system, with
expertise in aircraft limitations, navigation, flight
procedures, etc.  It relies on the Flight Mode
Interpreter to indicate the current operational mode of
the aircraft.  Based on that mode, the Pilot Advisor
“fires” a set a rules that check physical limitations of
the aircraft, displays information relevant to the
current mode on the HUD and the HDD, and assists
the pilot in flight planning.  The PA manages displays
on the HUD and HDD to provide the clearest possible

view of the situation and to support pilot activities.  A
goal of the Pilot Advisor is to decrease the pilot’s
workload during the flight.

Flight Mode Analysis

The Flight Mode Interpreter is responsible for
making a decision about the aircraft operating mode
based on sensor information, navigational
information, and mission planning.  The FMI
decreases the need for pilot input to the advisory
system by automatically inferring the current stage of
a flight.  The advice, alarms, and symbology of the
HUD and HDD are driven by the flight mode inferred
by the Flight Mode Interpreter.  There are four basic
requirements of the FMI.

• It must provide the correct flight mode.  The
measure of the FMI’s performance is based on
how closely the FMI can match a pilot’s intended
mode.

• It must provide information about the certainty
and confidence associated with the decision.

• It must be robust.  That is, it must be able to make
the mode decision even if not all the sensor
readings point to the same mode.

• It must not be “nervous”.  Quick oscillations
between modes will translate into HUD
symbology that blinks off and on, advice that is
changing and perhaps even conflicting, and alarm
messages that come and go.

The FMI classifies the current operating condition
of the aircraft into one of seven “modes”.  The seven
operational modes are shown in Table 1.  The
classification is made based on eight input variables
that are provided by the sensor suite of the aircraft.
Table 2 lists the sensed values.  These eight variables
form an eight-dimensional space of aircraft operation.

Operational Flight Modes
TAXI

TAKEOFF
CLIMBOUT

CRUISE
INITIAL APPROACH
FINAL APPROACH

LANDING
Table 1.  Operational flight modes for the

ASTRA project

FMI Inputs
Engine Power

Angle of Attack
Roll

Gear Setting
Flap Setting

Indicated Airspeed
Altitude

Rate of Climb
Table 2.  Input variables for the Flight Mode

Interpreter.
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At any given time in a flight, the aircraft’s state can
be quantified as a single point in that eight-
dimensional space.  The job of the FMI is to partition
that space into seven different operational modes.

Fuzzy Inference

The concept of a fuzzy set was introduced by Lotfi
Zadeh in 1965 [3].  The stated purpose was to deal
with "classes" that have no "sharply defined criteria of
class membership."  Fuzzy sets allow the construction
of system models when the sets that comprise the
system are not clearly defined.  Such is the case for
the operating modes listed in Table 1.  For the
ASTRA project, fuzzy sets provide a way to partition
the operating space into fuzzy, sometimes ambiguous
modes.

A fuzzy set is completely defined by its fuzzy
membership function, µ(x), which gives the degree of
membership of an element, x, in a set.  If µΑ(x) = 1, x
has “full membership” in the fuzzy set A.  If µΑ(x) =
0, x has “no membership” in the fuzzy set A.  For 0 <
µΑ(x) < 1, uncertainty or ambiguity exists which
causes x be a member of A to some extent [4].  For
our flight mode interpretation problem, the fuzzy sets
are the flight modes (e.g., TAKEOFF, CLIMBOUT,
CRUISE, etc.) and x is a vector of the current sensor
readings.

The design of the FMI has been based on fuzzy
logic.  Fuzzy logic provides a good way to model the
uncertainty associated with the flight modes.  The
uncertainty results from variation in pilot style and the
inherent overlap of the modes in the state space.

It is interesting to note that the output of the FMI
must be a crisp classification.  Unlike a fuzzy control
system which benefits from smooth transitions
between control sets, the flight mode interpretation
problem requires a crisp, discrete decision.
Symbology on the HUD is either displayed or it is not
displayed; alarms are either issued or not.  There is no
fuzziness in the end result.  What then is the reason
for using fuzziness in the classification process?

There are three motivations for using fuzzy logic in
the Flight Mode Interpreter.

• While the flight mode decision is crisp, the rules
for determining the mode are not.  Fuzzy logic
provides a framework for encoding that
uncertainty into the FMI rules.

• Fuzzy rules also allow for resolution of
conflicting data.  If the rate of climb does not
match the mode CRUISE, but all the other inputs
suggest CRUISE, a fuzzy approach could still

make a CRUISE decision.

• Finally, while the mode decision is crisp, the
transitions between modes are not.  Calculating a
confidence and certainty about the fuzzy decision
not only facilitates filtering the mode decision,
but also gives the pilot an indication of the
reliability of the Pilot Advisor’s messages.

There is a group of fuzzy logicians and statisticians
who view fuzzy logic as a form of the Bayesian
probabilistic approach to uncertainty and decision
making.  From a Bayesian point of view, the concept
of a fuzzy set is analogous to a subjective probability
[5].  Painter [6] has shown that, in fact, a common
implementation of fuzzy logic can be formulated in
Bayes notation.  Due to the rich and proven heritage
of Bayesian probability, the Bayesian interpretation of
fuzzy logic has guided the ASTRA research.

Certainty and Confidence

The Flight Mode Interpreter not only produces a
qualitative description of the current state of the
aircraft, but also provides two measures about that
description – the certainty and the confidence.  Both
are measures in the range of [0, 1].

The certainty associated with each operational
mode is the degree to which the current input
variables match that mode using abductive reasoning
[7].  The certainty is simply the degree of membership
that a state vector has in the multidimensional fuzzy
set for each mode.  The multidimensional fuzzy
modes are currently implemented by a composition of
one-dimensional fuzzy sets defined in the domains of
each input variable.  For example, to determine if the
airplane is currently in the TAKEOFF mode, the
sensor readings for the altitude, thrust, rate of climb,
etc. are independently calculated using the
corresponding TAKEOFF fuzzy sets.

As an example, the degree of certainty that the
aircraft is in the TAKEOFF mode is computed
according to the Bayesian version of the fuzzy
compositional rule of inference.  Similarly, the
confidence levels for the other modes are calculated
and the decision of the current mode is taken to be the
one with the maximum confidence.

Another calculation has proven useful in
understanding the confidence associated with a
particular flight mode decision.  The confidence is
calculated based on the flight modes with the highest
and second highest certainty values.  If C1 is the
certainty of the chosen mode, and C2 is the next
highest calculated certainty, the confidence of a
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decision is defined as
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Figure 2.  Relationship between certainty and
confidence.

As the airplane transitions from one mode to
another, the certainty values will inevitably decrease
for the initial mode and increase for the mode being
entered.  The FMI will choose the mode with the
highest certainty, and the confidence of that decision
will decrease due to the ambiguity that exists in the
transition.

FMI Performance

The measure of the FMI’s performance is how
closely its mode decision matches the intended mode

of the pilot.  During testing of the FMI, the pilot
indicates what mode best characterizes the current
situation.  The FMI should come reasonably close to
selecting the same mode.  The plot of Figure 3 is a
good example of the FMI’s ability to emulate what the
pilot considers to be the modes for an entire flight
from takeoff to touchdown.  This plot is from a flight
simulator for a Commander 700, a light, twin engine
general aviation aircraft.

Notice that sometimes the computer’s inference
may slightly lead the pilot’s stated mode (e.g., the
CLIMBOUT to CRUISE transition).  Other times the
computer may lag in the inference (e.g., the CRUISE
to INITIAL APPROACH transition).  However, the
FMI performance follows closely enough for the Pilot
Advisor to give meaning and helpful messages
through all seven stages of the flight.

Concluding Remarks

Because of the high dimensionality of the flight
mode interpretation problem, and because of the
correlation inherent in the input variables, the authors
have developed a new technique for expressing and
calculating multidimensional fuzzy membership
functions [8].  What has come to be known as
hypertrapezoidal fuzzy membership functions shows
promise as a new technology for development in the
ASTRA system.  Figure 4 is an example of four two-
dimensional fuzzy sets defined on the state space of
altitude and airspeed.  The current FMI
implementation relies on the composition of one-
dimensional membership functions to approximate
what are actually multidimensional relationships.
Hypertrapezoidal membership functions are a way to
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Figure 3.  FMI Performance for an entire flight.
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explicitly design correlated models of the flight
modes.

While the new method is general for any number of
dimensions, visualization is limited to plots of three
dimensions – two input variables and the degree of
membership.  Eight-dimensional fuzzy sets are shown
as they would be projected onto the domains of
airspeed and altitude. Preliminary results show that
multidimensional membership functions will be an
efficient way to partition the input space into flight
modes.

One promising aspect of the hypertrapezoidal
approach is the ease with which training can be
incorporated into the design of the fuzzy sets.  The
value of training methods for the fuzzy inference stage
of ASTRA became obvious when the flight

simulator’s model of the project’s Commander 700
aircraft was recently updated.  The slight change in
the aircraft model changed the aircraft state variables
enough to produce a degradation in the FMI’s
performance.  The membership functions had to be
manually re-tuned.  Installing an ASTRA system on
different aircraft (and perhaps even different
configurations of the same aircraft) could be eased by
an off-line training mechanism.

Another area of future research is “decision
filtering”.  Figure 5 shows an example of what the
ASTRA team has termed “nervousness”.  Notice how
the interpreter’s decision oscillates back and forth
between modes near the transitions.  This translates
into HUD symbology that comes and goes, and HDD
messages that flicker off and on.  Adjusting the fuzzy
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Figure 4.  Two-dimensional fuzzy membership functions.
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Figure 5.  Example of FMI’s  “nervous” behavior near transitions.
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membership functions has smoothed much of the
nervousness (the plot was generated using an old set
of membership functions), but the FMI may still
benefit from filtering either the certainty values or the
inference itself.

The Aeronautical Safety and Training Rules
Advisor is a step forward in smart-cockpit technology
for GA aircraft that would not be feasible without the
development of soft computing techniques.
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