
W. Kelly, R. Challoo, et. al, “Neuro-fuzzy Control of a Robotic Arm”,
Proceedings of the Artificial Neural Networks In Engineering Conference ,
St. Louis, MO, November 10-13, 1996, pp. 837-842.

837

NEURO-FUZZY CONTROL OF A ROBOTIC ARM

WALLACE E. KELLY III
Department of Electrical Engineering
Texas A&M University, College Station, Texas 77843-3128

RAJAB CHALLOO, ROBERT MCLAUCHLAN, S. IQBAL OMAR
Intelligent Control Systems Laboratory
Texas A&M University – Kingsville, Kingsville, Texas 78363

ABSTRACT:
This paper first presents a discussion of the reasoning and method
for combining neural networks and fuzzy logic. The problem of
moving a robotic arm in the presence of an obstacle is discussed.
Several neuro-fuzzy controllers are trained using sample data
obtained from a human’s control of a robotic arm. Their
performance is quantified and compared. It is shown that the
definition of the fuzzy membership functions plays a significant role
in the ability of the neuro-fuzzy controller to learn and generalize.
Possible directions for future work are suggested.

NEURO-FUZZY SYSTEMS

Recently, the combination of neural networks and fuzzy logic has received attention.
Neural networks bring into this union the ability to learn, but also require an
excessive number of iterations for training of complex systems. Fuzzy logic offers a
system model based on membership functions and a rule base, but require an explicit
stating of the IF/THEN rules.

Several methods for combining neural networks and fuzzy logic have been
studied (Khan, 1993) (Lin and Song, 1994) (Nauck, et. al., 1993). In this paper, the
authors implement the inference stage of a fuzzy system using a neural network
(Challoo, et. al., 1994) (Keller, et. al., 1992). Figure 1 illustrates the system
architecture for the described combination of neural networks and fuzzy logic. By
replacing the rule base of a fuzzy system with a trainable neural network, complex
input-output relationships can be achieved which can not be easily specified by

Fuzzifier Neural

Network

Rule Base

DefuzzifierInputs
Crisp

Outputs
Crisp

membership

values

membership

values

Figure 1. A fuzzy system with neural network rule base

W. Kelly, R. Challoo, et. al, “Neuro-fuzzy Control of a Robotic Arm”,
Proceedings of the Artificial Neural Networks In Engineering Conference ,
St. Louis, MO, November 10-13, 1996, pp. 837-842.

838

IF/THEN rules. With fuzzification and defuzzification stages augmenting a neural
network, significant improvements in the training time, in the ability to generalize,
and in the ability to find minimizing weights can be realized. Furthermore, the fuzzy
membership functions give the designer more control over the neural network inputs
and outputs.

THE ROBOTIC ARM PROBLEM

For robots to become effectively used in a wide range of applications, they must gain
the ability to work in unpredictable environments. This paper addresses the problem
of planning the trajectory of a three-link robotic arm in the presence of an obstacle.

The arm operates in two dimensions in an environment containing a randomly
placed obstacle and goal. The starting position of the arm is arbitrary as well. For
the purpose of designing the control system, the positions of the obstacle and goal
and the joint angles of the arm are assumed to be available from position feedback
sensors in the arm.

The arm is modeled as a three-link planar manipulator, as shown in Figure 2. The
model is strictly geometric. That is, the dynamics of moving a finite mass arm are not
considered for the purpose of this study. The controller will determine a series of
joint angles, Θ(t), that move the end effector from a given starting position (xs, ys) to
a desired final position (xg, yg) without colliding with the obstacle at (xo, yo).

Previous approaches to this problem using fuzzy logic have focused on choosing
the joint angles of redundant manipulators given a desired path (Kim and Lee, 1993)
(Xu, et. al., 1993) (Wang, et. al., 1994) or specifying criteria for choosing those joint
angles using fuzzy rules (Palm, 1992). Unlike these approaches, this work uses a
fuzzy controller that learns the strategy for moving the arm to the goal position
without touching the obstacle. That strategy is learned by observing a human’s
control of the arm.

The goal must be assumed to lie within the possible reach of the end-effector and
the obstacle must be assumed to lie outside the path of the first link. The problem
can be summarized as follows:

Given a robotic arm with:
• the current joint angles, Θ(0),
• an obstacle position, (xo, yo), and
• a desired position, or goal, (xg, yg);

Find a trajectory, Θ(t), such that:
• the end-effector reaches the goal,
• the arm does not touch the obstacle, and
• the calculations can be performed in real-time with current hardware.

W. Kelly, R. Challoo, et. al, “Neuro-fuzzy Control of a Robotic Arm”,
Proceedings of the Artificial Neural Networks In Engineering Conference ,
St. Louis, MO, November 10-13, 1996, pp. 837-842.

839

STATE REPRESENTATION

One of the primary considerations in the design of the neuro-fuzzy controller is the
representation of the state of the system. The ability of the final neuro-fuzzy
controller to generalize a solution from training data depends largely on the data
representation scheme. The controller must be provided with the joint angles and the
locations of the obstacle and goal.

There are actually several ways to provide information about the locations of the
goal and obstacle. Providing Cartesian or polar coordinates of the two objects would
result in seven, independent inputs. This scheme, however, would require that the
controller repeatedly learn the same strategy for similar configurations of the end-
effector, goal and obstacle if that configuration happened to occur in a different
Cartesian region. If, on the other hand, the location of the goal and obstacle are
represented by their relative distance to the end-effector, then strategies can be
generalized for similar configurations regardless of where they occur in Cartesian
space. Table 1 and Table 2 list the inputs and outputs that were chosen to represent
the system.

NEURO-FUZZY SOLUTION

As with most systems involving neural networks, training samples were required
which demonstrated the desired input-output relationship. The samples were
obtained by cycling through a series of goal and obstacle positions on a simulation of

obstacle

goal

θ
1

θ
2

θ
3

xo
y
g

y
o xg

Figure 2. The state representation for the goal-obstacle problem.

TABLE 1: INPUTS TO THE NEURO-FUZZY
CONTROLLERS

Input Description

θ1 joint angle of link1 to the base

θ2 joint angle of link2 from link1’s axis

θ3 joint angle of link3 from link2’s axis

xo horizontal distance to the obstacle

yo vertical distance to the obstacle

xg horizontal distance to the goal

yg vertical distance to the goal

TABLE 2: OUTPUTS OF THE NEURO-FUZZY
CONTROLLERS

Outputs Description

∆θ1 a change in the angle between link1
and the base

∆θ2 a small change in the angle between
link2 and the link1 axis

∆θ3 a small change in the angle between
link3 and the link2 axis

W. Kelly, R. Challoo, et. al, “Neuro-fuzzy Control of a Robotic Arm”,
Proceedings of the Artificial Neural Networks In Engineering Conference ,
St. Louis, MO, November 10-13, 1996, pp. 837-842.

840

the robotic arm. The simulated arm was manually maneuvered past the obstacle and
to the goal. Goal and obstacle positions were taken from the entire reachable region.

As the training samples were recorded, each movement created a new input to
the neuro-fuzzy system. Therefore, selecting starting positions of the arm at the two
extremes of possible movements generated training samples that extended over the
entire state space. Obtaining training samples over an entire range of possible state
space is important for neuro-fuzzy design.

The recorded samples were used to train seven neuro-fuzzy controllers to
emulate the strategies demonstrated in the human’s control of the arm. Testing the
controllers consisted of placing the goal and obstacle objects at random locations and
assigning a random starting position for the arm. The controller simulation quantified
the performance of each neuro-fuzzy controller by determining the percentage error
in reaching the goal, detecting collisions, performing all the necessary calculations so
that a judgment can be made about the possibility of real-time application.

EXPERIMENTAL RESULTS

The training samples were used to train seven different neuro-fuzzy controllers,
named FNN1, FNN2, ... FNN7 for reference. The controllers varied in the definition
of their fuzzy membership functions and in the number of hidden nodes.

Figure 3 through Figure 9 show the seven FNN fuzzy membership functions.
Notice the change in granularity and also the change in the concentration of the fuzzy
values. With the increased granularity in the fuzzy sets, more hidden layer nodes
were required. For example, FNN1 partitioned each of the seven inputs into three
fuzzy sets yielding 21 input nodes. In this case, 35 hidden layer nodes were used.
Figure 10 shows the final RMS training error which indicates which fuzzy
membership function definitions were best able to emulate the training samples.

Normalized distance to object

D
eg

re
e

o
f

m
em

b
er

sh
ip

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

NEG ZERO POS

Figure 3. FNN1 - 3 fuzzy sets per input and 35
hidden layer nodes.

Normalized distance to object

D
eg

re
e

o
f

m
em

b
er

sh
ip

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

NL NM NS ZERO PS PM PL

Figure 4. FNN2 - 7 fuzzy sets per input and 65
hidden layer nodes.

Normalized distance to object

D
eg

re
e

o
f

m
em

b
er

sh
ip

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

NL NM NSZEPS PM PL

Figure 5. FNN3 - 7 fuzzy sets per input and 65
hidden layer nodes.

Normalized crisp values

D
eg

re
e

o
f

m
em

b
er

sh
ip

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

NVL NL NM NS NVS ZEROPVS PS PM PL PVL

Figure 6. FNN4 - 11 fuzzy sets per input and 85
hidden layer nodes.

W. Kelly, R. Challoo, et. al, “Neuro-fuzzy Control of a Robotic Arm”,
Proceedings of the Artificial Neural Networks In Engineering Conference ,
St. Louis, MO, November 10-13, 1996, pp. 837-842.

841

Normalized distance to object

D
eg

re
e

o
f

m
em

b
er

sh
ip

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

NVS NS NM NSNVSZEPVSPS PM PL PVL

Figure 7. FNN5 - 11 fuzzy sets per input and 85
hidden layer nodes.

Normalized distance to object

D
eg

re
e

o
f

m
em

b
er

sh
ip

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Figure 8. FNN6 - 15 fuzzy sets per input and 100
hidden layer nodes.

Normalized distance to object

D
eg

re
e

o
f

m
em

b
er

sh
ip

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Figure 9. FNN7 - 15 fuzzy sets per input and 100
hidden layer nodes.

Neuro-fuzzy definition
F

in
al

 r
m

s
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

fnn1 fnn2 fnn3 fnn4 fnn5 fnn6 fnn7

Figure 10. A comparison of the final RMS training
errors.

Figure 11. Examples of successful control by the neuro-fuzzy controllers.

Figure 11 shows two screen-shots of successful control by the trained controller.
Figure 12 compares the collision and success rate for the seven controllers. The
controller was successful if the end-effector touched the goal and the arm never
touched the obstacle. A collision occurred if any part of the arm touched the
obstacle. The percentage of runs that resulted in the arm attempting to move past a
physical constraint, and the percentage of runs that the arm did not reach the goal are
not shown. Those two cases account for the remaining percentages.

Finally, many attempts were made to train a back propagation neural network to
control the simulated arm. The neural networks without the fuzzification layer were

Neuro-fuzzy controller definitions

P
er

ce
n

ta
g

e
o

f
10

00
ru

n
s

0%

10%

20%

30%

40%

50%

60%

fn
n1

fn
n2

fn
n3

fn
n4

fn
n5

fn
n6

fn
n7

collisions

success

Figure 12. A comparison of the performance of all the controllers.

W. Kelly, R. Challoo, et. al, “Neuro-fuzzy Control of a Robotic Arm”,
Proceedings of the Artificial Neural Networks In Engineering Conference ,
St. Louis, MO, November 10-13, 1996, pp. 837-842.

842

not able to generalize strategies from the sample data.

CONCLUSIONS

Two conclusions can be drawn from the experimental results. First, the membership
functions are an important part of the neuro-fuzzy system. Figure 10 shows that the
final training error was reduced 50% by increasing the number of fuzzy values in a
fuzzy set. Figure 12 shows that membership functions, defined with an important
aspect of the problem in mind, consistently improved performance by more than
25%. Second, the fuzzification stage allowed the neural networks to learn more
complex functions than a neural network without fuzzification.

The performance of the neuro-fuzzy controllers is less than perfect. Even the
best controller had a collision rate of 17%. A large percentage of the failures resulted
from the controller attempting to move past the physical joint constraints. Another
situation that decreased performance occurred when the arm started oscillating
between two points. A few heuristics in the control program could decrease these
problems. The seven FNN controllers of this project were trained to 2150 training
samples. Future work will determine the adequacy of the training samples. A study
of the relationship of the training samples and the fuzzy membership functions would
be particularly helpful.

The use of neuro-fuzzy systems for control has been examined. Fuzzification of a
neural network’s inputs and outputs will become a standard procedure in neural
network applications.

REFERENCES

Challoo, R., Clark, D., McLauchlin, R., and Omar, S. (1994). "A Fuzzy Neural Hybrid System,"
Proceedings of the 1994 IEEE International Conference on Neural Networks , pp. 1654-1657.

Keller, J., Yager, R., and Tahani, H., (1992). "Neural Network Implemention of Fuzzy Logic,"
Fuzzy Sets and Systems, Vol. 45, pp. 1-12.

Khan, E., (1993). "An Elegant Combination of Fuzzy Logic & Neural Nets", Proceedings of Fuzzy
Logic ’93, pp. A223-1 - A223-7.

Kim, S., and Lee, J., (1993). "Inverse Kinematics Solution Based on Fuzzy Logic for Redundant
Manipulators", Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 904-910.

Lin, J., and Song, S., (1994). "A Novel Fuzzy Neural Network for the Control of Complex Systems,"
Proceedings of the 1994 IEEE International Conference on Neural Networks, pp. 1668-1673.

Nauck, D., Klawonn, F., and Kruse, R., (1993). "Combining Neural Networks and Fuzzy
Controllers" Fuzzy Logic in Artificial Intelligence (FLAI93), ed. Klement, Erich Peter and
Slany, Wolfgang, pp. 35-46.

Palm, R., (1992). "Control of a Redundant Manipulator Using Fuzzy Rules," Fuzzy Sets and
Systems, Vol. 45, pp. 279-298.

Wang, D., and Gu, M., (1994). "Fuzzy Logic Joint Path Generation for Kinematic Redundant
Manipulators with Multiple Criteria," Proceedings of the 1994 IEEE/RSJ/GI International
Conference on Intelligent Robots and Systems, pp. 649-656.

Xu, Y., and Nechyba, M., (1993). "Fuzzy Inverse Kinematic Mapping: Rule Generation, Efficiency,
and Implemention," Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 911-918.

