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ABSTRACT

Dimensionality in Fuzzy Systems.  (August 1997)

Wallace Eugene Kelly, III, B.S., Texas A&M University – Kingsville;

M.S., Texas A&M University – Kingsville

Chair of Advisory Committee:  Dr. John H. Painter

This dissertation explores the theoretical and practical aspects of dimensionality in fuzzy

systems.  First, the author shows that fuzzy logic can be formulated from first principles of

Bayesian probability theory.  Such a formulation helps focus theoretical development of fuzzy logic

techniques.  For example, the effect of anomalous inputs on various forms of fuzzy inference can be

understood and considered during the design process.  The Bayesian interpretation of fuzzy logic

has also guided a fundamental improvement in the state-of-the-art of fuzzy system engineering.

Known as hypertrapezoidal fuzzy membership functions (HFMF), this new method of defining

multidimensional fuzzy relationships is motivated by an on-going research project in smart-cockpit

technologies.  The Automated Safety and Training Avionics project of Texas A&M seeks to

improve the safety of the general aviation industry by utilizing artificial intelligence techniques in

on-board avionics systems.  Efforts to enhance on-board situational awareness revealed a

fundamental weakness in fuzzy logic systems.  HFMFs address this weakness by enabling the

design of correlated fuzzy models with relatively few parameters.  HFMFs can be successfully used

for automatic flight mode interpretation and hold promise for many other applications.  Finally, the

author suggests directions for future research related to multidimensional fuzzy engineering.
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CHAPTER I

INTRODUCTION

RESEARCH OVERVIEW

This dissertation reports research pushing forward the theory and application of fuzzy logic

and fuzzy control.  The push is in a theoretical area needed to apply fuzzy logic to the interpretation

and management of systems of increasing complexity.  The theoretical work contained herein is

motivated by engineering development presently being sponsored in the automation of aircraft flight

management.  That ongoing development also proves to be an effective test-bed for the theoretical

results.

Use of onboard flight direction avionics has been standard in the commercial aircraft

industry for some time. In 1989, under NASA sponsorship [30], Texas A&M embarked on research

to extend the flight director concept.  The improvements involved incorporating recent results from

the field of artificial intelligence and expert systems.  The ability to maintain operation in the

presence of uncertainty was of primary importance.

During the NASA-sponsored project of 1989-94, a fuzzy expert system was developed in

simulation for interpretation and direction of the flight operations of a Boeing-737 jet transport

aircraft.  The project performed by Steve Lass during that time period was an onboard fuzzy flight

manager for controlling the descent from altitude of the jet, under operational constraints [23]. The

constraints essentially restricted the aircraft from entering certain regions of its operational state

space. Such a flight manager would have been impossible, using crisp rules. As it was implemented,

the fuzzy flight manager used forty rules to navigate around prohibited state space regions.

In the 1989-94 series, the application was to autonomous operation, closing the control loop

back through the automatic flight control system. The expert system functioned to formulate

commands to the auto-pilot which were then executed with pilot override capability.  A follow-on

NASA-sponsored commercialization project, commencing in 1994, focused on smaller aircraft, of

the light-twin category, and refocused functionality from autonomous metacontrol to pilot advising.

Termed ASTRA, the Automated Safety and Training Avionics project was first conceived

by Dr. John Painter in 1988.  The goals of the ASTRA project are twofold.  First, the goal is to

_______________

This dissertation follows the format of IEEE Transactions on Fuzzy Systems.



2

improve the safety of general aviation aircraft.  Second, the goal is to improve training of pilots for

those aircraft.  These goals are being accomplished through the incorporation of an onboard pilot

advisory system using the latest in computer hardware and artificial intelligence techniques.  The

onboard system improves the pilot’s situational awareness by monitoring the pilot’s flight

performance, informing the pilot of anomalies, and assisting in flight management.

AIRCRAFT METACONTROL

At the heart of the development of the pilot advisory system is the idea of an aircraft

metacontroller proposed by Painter [27] and demonstrated by Glass [14].  A metacontroller differs

from a flight control system in that a metacontroller generates high-level messages for the automatic

flight control system auto-pilot.  The metacontroller relies on a computer-encoded knowledge base

to give high level commands for flying the aircraft.  Figure 1 is taken from [27] in which the

original metacontroller and pilot advisor concept are presented.  The idea of a metacontroller gives a

convenient hierarchical structure to the task at hand.

Aircraft Flight System Knowledge-based Flight Software

Sensors

Automatic
Flight

Control

Flight
Mode

Interpreter

Meta-
controller

Graphical
User

Interface

Explain
Facility

User
I/O

Inner
loop

Middle
loop

Outer
loop

Aircraft

Figure 1.  Original system architecture, including metacontroller.

The current state of the research does not pursue direct control of the aircraft, but rather

seeks to aid the pilot through monitoring and advising [31].  Figure 2 is a modification of the

original system architecture that reflects this change in functionality.  Figure 2 first appears in [21].

The pilot advisor now uses encoded knowledge to act as an assistant to the pilot.  The knowledge is

encoded using fuzzy logic and expert system rules.  The domain of the encoded knowledge is related



3

to safety, navigation, and general aircraft performance issues.  Such a pilot advisory system is a

valuable step toward increased automation in the cockpit.

Aircraft Flight System Knowledge-based Flight Software

Sensors

Pilot

Flight
Mode

Interpreter

Pilot
Interface

HDD/HUD

Inner
loop

Outer
loop

Aircraft

Pilot
Advisor

Figure 2.  Updated system architecture, including pilot advisor.

There are four primary components to the current system architecture.  The pilot and the

aircraft are of course the central members of the overall system.  The Pilot Advisor (PA) and the

Flight Mode Interpreter (FMI) are the other two primary components.  The PA serves the function

of metacontroller.  The PA and FMI are basically two software modules running in an on-board

avionics computer.  The Flight Mode Interpreter is a fuzzy logic system that classifies the current

state of the aircraft into operational modes.  The Pilot Advisor is an expert system that generates

messages for the pilot based on the inferred flight mode, aircraft sensor readings, and information

from the pilot.  A special suite of sensors is necessary to interface the aircraft to the on-board

computer.  A head-down display (HDD) and a head-up display (HUD) provide an interface to the

pilot.

The Pilot Advisor is an expert system, with expertise in aircraft limitations, navigation,

flight procedures, etc.  It relies on the Flight Mode Interpreter to indicate the current operational

mode of the aircraft.  Based on that mode, the Pilot Advisor “fires” a set a rules that check physical

limitations of the aircraft, displays information relevant to the current mode on the HUD and the

HDD, and assists the pilot in flight planning.  The PA manages displays on the HUD and HDD to

provide the clearest possible view of the situation and to support pilot activities.  A goal of the Pilot

Advisor is to decrease the pilot’s workload during the flight.
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FLIGHT MODE INTERPRETATION

 The key to both the metacontroller and the pilot advisor system is the modeling of aircraft

operations as predefined operating modes.  These operating modes are inferred from measurements

of standard flight variables, such as airspeed, altitude, etc.  Specific operating modes then

correspond to partitions of an operational state space, as shown in Figure 3.  Flight-mode inference

is possible by observing into which state space partition flight-sensor measurements fall. Given such

an inference and a set of rules defining the operational modes as functions of flight variables, flight

guidance may be formulated, to fine-tune the observed operational mode.

Measurement from sensor A

M
ea

su
re

m
en

t f
ro

m
 s

en
so

r 
B

Mode #1
Mode #2

Mode #3

Mode #4

Figure 3.  An aircraft’s state space can be partitioned into operational modes.

The Flight Mode Interpreter is responsible for making a decision about the aircraft

operating mode based on sensor information, navigational information, and mission planning.  The

FMI decreases the need for pilot input to the advisory system by automatically inferring the current

stage of a flight.  The advice, alarms, and symbology of the HUD and HDD are driven by the flight

mode inferred by the Flight Mode Interpreter.  There are four basic requirements of the FMI.

• It must provide the correct flight mode.  The measure of the FMI’s performance is based on

how closely the FMI can match a pilot’s intended mode.

• It must provide information about the certainty and confidence associated with the decision.
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• It must be robust.  That is, it must be able to make the mode decision even if not all the

sensor readings point to the same mode.

• It must not be “nervous”.  Quick oscillations between modes will translate into HUD

symbology that blinks off and on, advice that is changing and perhaps even conflicting, and

alarm messages that come and go.

FUZZINESS AND UNCERTAINTY

The overlap between the modes of Figure 3 is intentional and reflects the uncertainty that

exists when defining flight modes.  Uncertainty results from the fact that the transitions from one

mode to the next are gradual, not discrete.  Other sources of uncertainty include differences in flying

technique between pilots and difference in flight conditions from day to day.  These uncertainties are

what motivate a fuzzy solution to the problem of flight mode interpretation.  Crisp, discrete

boundaries can not be drawn between flight modes.

The concept of a fuzzy set was introduced by Lotfi Zadeh in 1965 [42].  The stated purpose

was to deal with “classes” that have no “sharply defined criteria of class membership.”  Fuzzy sets

allow the construction of system models when the sets that comprise the system are not clearly

defined.  Such is the case for the operational flight modes of an aircraft.  For the ASTRA project,

fuzzy sets provide a way to partition the operating space into fuzzy, sometimes ambiguous modes.

Fuzzy systems are primarily useful to the engineer as a means for encoding human

knowledge and expertise into systems.  Fuzzy logic lends itself well to automating human decision

processes, when the decision rules can be stated in terms of if/then rules.  Fuzzy logic allows for the

presence of uncertainty when making decisions.  Previous fuzzy control applications have been

successful for systems having relatively few measured states and relatively few control rules.  One

example is train positioning during station arrival, for the Sendai subway in Japan [34]. By way of

comparison, flight management is orders of magnitude more complex.

The recent surge of fuzzy applications has demonstrated the above strength.  It has also

revealed some fundamental weaknesses.  In particular, the current state-of-the-art is impractical for

complex systems.  It is the complexity of multivariate flight mode interpretation that motivates

much of the research documented in this dissertation.  Specifically, multidimensional fuzzy

membership functions provide a way to partition a multivariate state space into fuzzy regions.  Use

of such functions significantly simplifies fuzzy implementation for complex systems.  For complex
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control and decision problems with many inputs, fuzzy systems require a huge rule base.  This rule

base increases exponentially with the number of inputs.  Large rule bases are difficult to encode and

even more difficult to verify.  A very important result from Lass’s project [23] was that by shifting

from one-dimensional to two-dimensional fuzzy membership functions, the 40-rule set was reduced

to 2 rules, a 20-fold saving in complexity.

Another weakness in the current state-of-the-art for fuzzy systems engineering is the

cumbersome and inconsistent manner in which correlation between input variables is modeled.  In

the example of flight mode interpretation, correlation exists between input variables when defining

the flight modes.  The diagonal orientation of modes 1 and 3 in Figure 3 are the result of

correlation.  Multidimensional fuzzy membership functions address the issue of rule base size and

correlation.

OTHER RESEARCH EFFORTS

Texas A&M University is not alone in recognizing the potential benefits of incorporating

advanced computing techniques into the cockpit.  The Advanced General Aviation Transport

Experiments (AGATE) is a consortium composed of NASA, the FAA, industry and university

representatives [8].  Created in 1994 and given an eight year time-frame, the goal of the AGATE

consortium is to revitalize the general aviation industry.  Many in the AGATE consortium have a

vision for a Small Aviation Transportation System (SATS) which would serve as an alternative to

short-range automobile trips for both personal and business transportation.

Several key capabilities are motivating an upgrade to the status-quo of avionics.  The

global positioning system (GPS) will continue to revolutionize and ease the task of on-board

navigation.  Indeed, GPS is an essential element of the ASTRA program.  On-board traffic

avoidance systems and data link capabilities will also increase the possibility for a new generation

of avionics.  On-board radar imaging and weather awareness technologies will allow for safety to be

further increased.

A research effort similar to ASTRA is also being conducted by Search Technology, Inc. in

Norcross, Georgia [36].  The goal of their Hazard Monitor software is to prevent “the negative

consequences of hazardous situations that arise in the cockpit.”  The target aircraft for the Hazard

Monitor are larger, commercial and transport aircraft.  Like ASTRA, the Search Technology

program does not seek to control the aircraft directly, but rather notifies the pilot of potential

problems.



7

As more and more information becomes available in the cockpit, the need for on-board data

fusion capabilities will become essential.  It will also enable a greater degree of situational

awareness.  The on-going smart-cockpit research at Texas A&M University is poised to help usher

in a new generation of avionics.

DISSERTATION OVERVIEW

The following chapters develop new techniques for utilizing fuzzy logic in complex

systems, like smart-cockpit avionics.  Chapter II contains a unified presentation of the the theory

behind fuzzy logic, including a clear demonstration of the relationship between fuzzy logic and

Bayesian probability.  This relationship motivates the development of hypertrapezoidal fuzzy

membership functions in Chapter III.  This new technique for defining and using multidimensional

fuzzy relationships is an important extension to fuzzy logic with application in fuzzy control and

classification.  Chapter III also includes a discussion of the various system architectures that can

assist the engineer in designing fuzzy systems.  Chapter IV is a comprehensive collection of results

obtained from the author’s research applied to the domain of flight mode interpretation.  The

chapter includes results from applying hypertrapezoidal fuzzy membership functions to the flight

mode interpretation process, the use of mode filtering techniques, and other upgrades to the ASTRA

project.  Conclusions and recommendations for further work are listed in Chapter V.
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CHAPTER II

FUZZY DECISION THEORY

FUZZY LOGIC

Fuzzy Sets

The concept of a fuzzy set was introduced by Lotfi Zadeh in 1965 [42].  According to

Zadeh, the stated purpose of fuzzy sets is to deal with “classes” that have no “sharply defined

criteria of class membership.”  A fuzzy set is completely defined by its fuzzy membership function,

µ(x), which gives the degree of membership of an element, x, in a fuzzy set.  The classic example is

that of the set of tall people.  The height of a person will indicate whether or not a person is tall, but

the boundary between tall people and short people can not be drawn at some exact height.  Fuzzy

sets allow the construction of system models when the sets that comprise the model are not clearly

defined.

The membership function indicates the degree of membership of a crisp value in a fuzzy

set.  A variety of basic shapes can be used to design the fuzzy membership functions.  The

trapezoidal fuzzy membership function is the most popular.  Trapezoids are easily specified and

calculated.  The Gaussian probability function is useful in problems requiring adaptation because it

is everywhere differentiable.  Usually, the choice is based more on personal preference than any

mathematical justification.  Figure 4 shows the common basic shapes used in fuzzy systems.

One motivation for the use of fuzzy sets is in modeling human expertise.  Generally, a

human’s perception of a system is not based on precise mathematical models.  We tend to

understand systems on more of a heuristic level.  A computer’s strength, on the other hand, is in

precise numerical or repetitive tasks.  Fuzzy logic is a way of mapping human knowledge into a

form useable by a computer.  The last ten years have seen an explosion in the use of fuzzy logic for

solving many practical problems.
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Figure 4.  Common shapes for fuzzy membership functions.

Fuzzy Set Operations

Once fuzzy sets have been defined, the next step is to perform operations on those fuzzy

sets.  As of yet, there is not a consensus in the fuzzy community regarding how fuzzy set operations

should be defined.  The more common are known as the soft and hard connectives.  If the fuzzy

membership functions are viewed as Bayesian conditional probabilities, the soft fuzzy connectives

provide consistency [28].  Figure 5 shows plots of both the soft and hard connectives for two sets

defined in the same domain.

The first fuzzy set operation to define is intersection, or the AND operator.  For fuzzy sets

A and B, with degrees of membership µA(x) and µB(y), the intersection of A and B is defined by

µA∩B(x, y), where
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( ) ( ) ( )
( ) ( ) ( )( )
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The second fuzzy set operation to define is the union, or the OR operator.  µA∪B(x, y) is

defined by

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

Soft:  

Hard:  

µ µ µ µ µ
µ µ µ

A B A B A B

A B A B

x y x y x y
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= + − ⋅
=

(2)

The third fuzzy set operation to define is complement, or the NOT operator.

( ) ( )µ µA Ax x= −1 (3)
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Figure 5.  Hard and soft fuzzy connectives for sets in the same domain.
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While Figure 5 shows the fuzzy operations being performed on two variables in the same

domain, generally set operations are performed on sets of different domains.  Sets might be defined

on the domains of altitude and airspeed to determine the flight mode of an aircraft.  In this case, the

operations are defined in the rule base.  Figure 6 gives more insight into the use of the three basic

fuzzy set operations for operations in multiple domains.
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1
Fuzzy Set A

Domain of A Domain of B

Fuzzy Set B
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Hard Connectives
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Figure 6.  Hard and soft fuzzy connectives for sets in different domains.

FUZZY SYSTEMS

A fuzzy system uses fuzzy sets to perform a mapping of input variables to output variables.

They are helpful in situations which require the embedding of human expertise in a control or

advisory computer.  Traditional control is based on mathematical models of the system being
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controlled.  Fuzzy systems generally do not rely on a mathematical model of the system, but rather

on the knowledge of an expert familiar with the system.

Fuzzy systems have been used in a variety of applications.  Applications include tracking,

tuning, classification, voice recognition, financial predictions, automotive transmissions, washing

machines, image stabilization in video cameras, medical diagnosis, and most recently for flight

mode analysis of aircraft [27].  Fuzzy systems are a cost effective method for designing nonlinear

systems based on an heuristic understanding of the desired behavior.  Fuzzy systems are being used

to perform tasks that are beyond the scope of traditional control techniques.

A fuzzy system can be broken into three parts -- fuzzifier, rule base, and defuzzifier.

Figure 7 shows a typical fuzzy system.  The rule base is an essential element of any fuzzy system.

The fuzzifier and defuzzifier may not be needed in all situations.

µ(x2)

µ(x1)

µ(xM)

DefuzzificationRule BaseFuzzification

x1

xi

xi

xj

yk

x2

xM

µ(y1)

µ(yN)

y1

yN

Figure 7.  General structure of a fuzzy system.

Fuzzification

A fuzzifier is needed in cases where the input to the system is in the form of numerical data.

This would be the case when the inputs are coming from sensors which are measuring physical

quantities in the system.  In some cases, the input to the fuzzy system may not come in the form of

numerical data, but as fuzzy sets.  This would be the case for a medical diagnosis program when a

doctor might qualify the redness of a rash on a patient.

Similarly, not all situations require a defuzzifier.  In flight mode analysis, for example, the

output of the system is the operational mode of the aircraft.  No conversion to the real number line

is needed.  On the other hand, if the mode of operation of an aircraft was being used to drive inputs

to that aircraft, the final fuzzy sets would have to be defuzzified to generate actual throttle or

control surface positions.  Consider a greatly simplified example of an auto-pilot.  Each of three
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components of a fuzzy system would be needed to maintain altitude, heading, and airspeed of an

aircraft.

A fuzzy-based auto-pilot would require sensor readings of the variables which define the

aircraft’s state.  These might include, among others, the altitude, heading, and indicated airspeed.

The desired altitude, heading, and indicated airspeed would also be inputs, as well as the current

position of the throttle and control surfaces.  Each of these input variables must first be mapped to a

degree of membership in their respective fuzzy sets.  In other words, for the input vector, X, the

membership functions µi(X) must be evaluated.  The evaluation of µi(X) is called fuzzification.

Consider the example shown in Figure 8.  Five fuzzy sets are defined in the domain of

altitude error – VeryLow, Low, JustRight, High, and VeryHigh.  If the aircraft’s current altitude is

65 feet above the desired altitude, the degree of membership in the sets JustRight and High are 0.67

and 0.33, respectively.  From the Bayesian perspective, the membership functions correspond to

subjective, conditional probabilities.  Then the probability of the aircraft being in the mode,

JustRight is 0.67, or P(JustRight | εalt) = 0.67.  At the same time, P(High | εalt) = 0.33.  These are

measures of how closely the given altitude matches each mode.

-500 -400 -300 -200 -100 0 100 200 300 400 500

µ(
ε a

lt)

0
0.2
0.4
0.6
0.8

1

Altitude error (ft.)

VeryLow Low JustRight High VeryHigh

Figure 8.  Example of fuzzification of altitude error into modes JustRight and High

Fuzzy Rule Base

Fuzzification prepares crisp numerical data for input to the rule base.  The rule base is the

most important part of any fuzzy system.  The rule base encodes the knowledge of the expert into

if/then rules of the form

IF  THEN condition result
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where the condition is called the antecedent and the result is called the consequent.  Both the

antecedent and the consequent are logical propositions of the form

domain fuzzy seti j is  

where fuzzy setj is defined in the domain domaini using one of the membership functions discussed

earlier.  In the aircraft auto-pilot example, a sample rule could be

IF  is ,  THEN  is Altitude High ElevatorAngle NegativeSmall .

Generally, the antecedent contains conditions involving more than one domain, such that the

rules are of the form

IF  is  AND  is ,  THEN domain fuzzy set domain fuzzy set resulti j m n .

In this case, the AND operator is used to combine two conditional statements into one.  The method

of the combination is according to the definition of the fuzzy AND operator as defined in equation

(1).  When more than one condition is placed in the antecedent of an if/then rule, the overall effect is

to generate a new, multidimensional membership function in the product space of the propositions’

domains.  If the inference is performed using the probabilistic intersection of the inputs’ sets, then

that multidimensional region in state space is defined by

µ µ( , ,... ) ( )x x x xN i i
i

N

1 2
1

=
=

∏ (4)

The number of rules needed in a fuzzy system depends on the complexity of the desired

mapping, the number of inputs, and the number of fuzzy sets defined on each input domain.  The

size of the rule base is a major problem for complex fuzzy systems.  For a small two-input, one

output system, with the two input domains partitioned into five fuzzy sets, the number of rules

needed to completely cover the input space is 25.  If rules are needed for every combination of sets

defined in the domains of the inputs, the number of rules in the rule base grows exponentially

according to the following equation:

Number of rules =  

where ,  the number of outputs

,  the number of inputs

 the number of sets in each domain

M n

M

N

n

i
i

N

i

=
∏

1

,

(5)
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The complexity of the rule base is a major area of research for fuzzy systems.

Implication

Once the antecedent is evaluated, its “truth value”, or “degree of certainty”, is associated

with the proposition of the consequent.  If the fuzzy system includes defuzzification, the method of

implication must be considered.  Implication is a function of the antecedent’s “truth value” and the

output’s membership function.  Consider the rule IF x is A THEN y is B which has been evaluated

and found to have a “truth value” of β = µA(x).  The implication can be expressed as I(β, µB(y)).

The implication function is generally defined in one of two ways.

( ) ( )( ) ( )
( ) ( )( ) ( )( )

Scaling: 

Clipping: 

′ = = ⋅

′ = =

µ β µ β µ

µ β µ β µ
B B B

B B B

y y y

y y y

I ,

I , min ,
(6)

The product version of the implication maintains consistency with a probabilistic view of

fuzzy logic.  Figure 9 shows the effect of the two different methods of implication on the output

membership functions.
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µ(
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Figure 9.  Two methods of fuzzy implication.

Aggregation

Another function that must be performed in the rule base is aggregation.  Aggregation

determines how to combine the outputs of different rules which refer to the same fuzzy sets in their

consequence.  For example, suppose that the following two rules have antecedents that evaluate to

β1 = µA(x) and β2 = µB(x):

IF  is ,  THEN  is 

IF  is ,  THEN  is 

x A y C

x B y D
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What then is the membership function for the output, y?  Again, two methods are commonly used

for aggregation.  One results from a probabilistic view of fuzzy logic.  The other is based on the

clipping max and min operators.  For the two consequents C and D, which have “truth values”

(through an implication operation) of µC′ (y) and µD′ (y), the aggregation can be defined as

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

A ,

A , max ,

µ µ µ µ µ µ

µ µ µ µ
′ ′ ′ ′ ′ ′

′ ′ ′ ′

= + − ⋅

=
C D C D C D

C D C D

y y y y y y

y y y y
(7)

and is illustrated in Figure 10.
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Figure 10.  Two definitions for the aggregation of rule consequents.

Defuzzification

If the output of the fuzzy system must be a crisp value, one final step is needed –

defuzzification.  Like so many areas in fuzzy logic system design, the best choice for the
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defuzzification method is not universally agreed upon by fuzzy system engineers.  The two most

common methods are centroid and mean of maxima.

The centroid method of defuzzification is calculated by

( )
( )

( )
centroid ′ =

⋅ ′

′

∫
∫

C

y y

y

C

Y

C

Y

µ

µ

dy

dy
(8)

The mean of maxima method determines the average of the crisp points that maximize the

output membership function.  Mathematically, the mean of maxima method can be stated

( ) ( )

( ) ( )( )

MOM

where   

′ = ⋅

′ = =







′
′

′ ′

∫C y y

Y y y y

C

Y

C
y

C

µ

µ µ

dy

: max

(9)

Figure 11 shows examples of these two types of defuzzification.
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Figure 11.  Two methods of defuzzification – centroid and mean of maxima.
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BAYESIAN PROBABILITY

Zadeh’s philosophy of fuzzy sets is by far the most popular perspective in the fuzzy logic

community.  However, there is a growing popularity for the perspective that views fuzzy

membership functions as conditional probability functions.  Painter [28] has shown that a common

implementation of fuzzy logic can be formulated in Bayes notation.  He further concludes that

“fuzzy control may be easily understood, and therefore pragmatically applied, in terms of decision

and averaging concepts familiar in the Bayesian signal processing and control world.”

At the heart of the fuzziness vs. probability issue is the use of the Bayesian subjective

interpretation of probability, as opposed to the frequentist interpretation of probability based on

sample sets.  Instead of stating that a specific man of height x is tall to the degree of 0.75, a

Bayesian statistician would state the P(A|x) = 0.75.  Here A is the proposition, “the man is tall.”

In light of this argument, many statisticians and some engineers are of the opinion that

fuzzy set theory is nothing more than an ad hoc excursion away from well formulated theories of

uncertainty [24].  Peter Cheeseman, a researcher at NASA Ames Research Center is among the

more vocal.  See [5] and [6].  In [6], Cheeseman states that “FST is not a theoretical advance.”  He

suggests that the error in fuzzy set theory is in insisting on a dichotomy of sets when such a

dichotomy is meaningless.  Cheeseman further explains,

The amount of liquid in a cup, a person's height, the fullness of someone's beard,

and so forth are all continuously varying quantities, so to try to describe them with

a binary (true/false) predicate is an error.  A cup can be stated to have any degree

of fullness (fraction of volume occupied by liquid) as a simple assertion of degree,

without having to invent a whole new concept (FST) to do so.

Fuzzy set theory may not be the theoretical advancement some would like to believe.  It is

an engineering advancement, however.  It works, and many engineers have found it to be a fast and

easy way to implement knowledge-based systems.  The questions of its originality or uniqueness are

moot when the issues are design time and applicability.  The exponential growth in the number of

uses of fuzzy logic in real industrial applications is testimony to fuzzy logic's value to the

engineering community.

While philosophical debates are not what most practitioners need, for theorists the Bayesian

interpretation offers an important guide to understanding and extending fuzzy set theory.  The rich

and proven background of Bayesian statistics is a measure by which to judge many of the ad-hoc
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techniques that abound in fuzzy logic literature.  The view of membership functions as Bayesian

conditional probabilities have guided the work set forth in this dissertation.

THE BAYES/FUZZY ISOMORPHISM

The mathematical similarities between Bayesian probability and fuzzy logic is well

illustrated with an example from control theory.  Consider a set of mutually exclusive events, E1,

E2, …, EN which forms a partitioning of the space of all possible events.  That is,

( )

( )

E E E S

S

E E E

N

N

1 2

1 2

1

0

∪ ∪ ∪ =
=

∩ ∩ ∩ =
=

...

P

...

P

φ
φ

(10)

Each event has an associated a priori probability, P(Ei).  Due to the fact that the events are mutually

exclusive and form a complete partitioning of the event space, the probabilities must sum to unity.

( ) ( ) ( ) ( )P P ... P PE E E SN1 2 1+ + + = = (11)

The variable x is a value of the random variable X and is taken to be a sensor variable

useful for making decisions on the occurrence of the events E1,…,EN.  Conditional probability

density functions of the form fX(x|Ei) exist which model the probability of x given the occurrence of

an event, Ei.

The variable z is a value of a random variable Z describing a control action to be taken.

The control action is chosen based on the determination of event Ei.  The conditional probability

density function for the control variable z, given observation x, is

( )
( ) ( ) ( )

( ) ( )f z x

f z x E f x E E

f x E E
Z X

Z X i X i i
i

X j j
j

=
⋅ ⋅

⋅

∑
∑

, P

P
 (12)

which is shown from first principles in Appendix A.  The unique control value $z  is obtained by

taking the conditional mean.

{ } ( )$ E | | dzz z x z f z xZ X= = ⋅
−∞

∞

∫ (13)
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In order to facilitate the comparison of probabilistic control and fuzzy control, equation

(12) can be rewritten as

( ) ( ) ( )f z x f z x E G xZ X Z X i
i

i| ,= ⋅∑ (14)

( ) ( ) ( )
( ) ( )

( ) ( )
( )

where    G x
f x E E

f x E E

f x E E

f x

i
X i i

X j j
j

X i i

X

=
⋅

⋅

=
⋅

∑
P

P

P

(15)

Notice that (15) takes the form a
a b+ , which yields the following characteristics.

( ) [ ]
( )

G x

G x

i

i
i

∈

=∑
0,  1

1 (16)

These characteristics suggest that Gi(x) may be a probability.  Indeed, according to Bayes’

Theorem, equation (15) can be written

( ) ( )
( ) ( )f x E E

f x
E x

X i i

X
i

⋅
=

P
P (17)

showing that Gi(x) is the conditional posteriori probability of Ei given x.

( ) ( )G x E xi i= P (18)

This is the conditional probability function which is useful for implementing “minimum probability

of error” decision strategies [16].  However, here a hard decision is not made.  The a posteriori

probabilities are used to weight the conditional control densities, to yield an ensemble-averaged

control density.

( ) ( ) ( )f z x f z x E E xZ X ZX i i
i

= ⋅∑ , P (19)

Computing fZ|X(z|x,Ei) in equation (19) is not attractive, since in the simplest case, fZX(z,x,Ei)

is a three-dimensional density.  If x is a vector of sensor inputs, the problem becomes even more

complex.  A more desirable strategy for computing the control density is one based on fZ(z|Ei).
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What assumptions must be made to ignore the conditioning on x in fZ|X(z|x,Ei)?  Since Ei is an event

whose occurrence is modeled on the values of x, is the conditioning on x redundant?  The question

is,

( ) ( )f z x E f z EZ X i Z i,
?

= . (20)

From first principles it can be seen that this is the same as asking,

( ) ( ) ( )f z x E f z E f x EZX i Z i X i,
?

= ⋅ (21)

or in English, “Given Ei, are z and x independent?”  The answer is the following:

Given Ei, the a priori decision density, fX(x|Ei), is uniquely determined without recourse to z.

It is modeled from the decision problem on x and Ei.  Likewise, given Ei, the control density, fZ(z|Ei),

is uniquely determined without recourse to x.  It is also a model, from the control problem on z and

Ei.  Therefore, since the two conditional densities are uniquely determinable without recourse to the

other’s variable, the variables are conditionally independent.  Their independence flows from the

separateness of the decision and control problems.  The advantage of recognizing this independence

is a greatly simplified control density calculation.

( ) ( ) ( )f z x f z E E xZ X Z i i
i

= ⋅∑ P (22)

The preceding mathematical development was completed entirely based on first principles

of probability theory.  However, the similarities between this control method and a fuzzy logic

controller should be readily apparent to anyone familiar with the field of fuzzy control.  For

example, the events E1,…,EN correspond to the input fuzzy sets.  The calculation of P(Ei|x) may be

interpreted as a “fuzzification stage.”  The conditional densities fZ(z|Ei) are similar to output

membership functions and the calculation of the expected value, E{z|x}, is isomorphic to what is

known as the “centroid method.”  Figure 12 shows a comparison of the two types of controllers.

While the fuzzy controller relies on subjective membership functions and heuristic rules, the

Bayes controller relies on statistical densities and conditional probabilities, drawn from the well-

founded and consistent Bayes Boolean algebra.
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Figure 12.  Comparison of fuzzy and Bayesian controllers.

DEALING WITH UNCERTAINTY

Uncertainty is inherent in the real-world problems that engineers face.  Fuzzy decision

theory attempts to tackle the problem of reasoning under uncertainty.  Designing systems that can

accomplish a control objective or provide meaningful support to its users becomes a greater

challenge when sensors can be noisy or can malfunction, when operational modes are ambiguous, or

when the intent of the user must be determined.  The previous sections provided the mathematical

basis for fuzzy decision theory.  Here, various techniques for dealing with uncertainty are discussed

in the context of fuzzy decision theory.

On the most basic level, uncertainty in fuzzy systems is modeled by the fuzzy regions that

exists between the fuzzy sets defined by a rule base.  These fuzzy regions model the gradual

transitions that exist between what would otherwise be crisp sets.  Fuzzy logic has demonstrated its

usefulness in dealing with uncertainty by partitioning an operational space into sets with gradual

transitions.

On a higher level, uncertainty can also be modeled by modifying the interpretation of the

rules of a fuzzy rule base.  Such is the case for the Flight Mode Interpreter of the ASTRA project,

which is discussed in Chapter IV.  For this complex problem, several mechanisms for dealing with
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uncertainty in the rule base have been considered.  For example, consider the problem of defining a

region in a state space of high dimensionality.  The fuzzy rule is of the form

IF  is  AND....AND  is ,  THEN domain fuzzy set domain fuzzy set resulti i N N .

Mathematically, this rule is evaluated using equation (23):

( ) ( )µ µx x x xN i i
i

N

1 2
1

, ,... =
=

∏ (23)

The antecedent defines a fuzzy set in the state space of N domains.  The result can be a

conclusion, or decision, or control action.  Suppose, however, that the variable of domain i does not

fall into the region covered by fuzzy set i.  In this case, the consequence will not be concluded, or

decided, or acted upon because one of the conditions of the antecedent is not met and the product of

equation (23) evaluates to zero.  This is acceptable if the state space is entirely covered by other

rules in the fuzzy rule base.  However, in systems with high dimensionality, covering the entire state

space is impractical.

In the flight mode interpretation problem, several inputs are used to interpret the current

operational mode of the aircraft.  If one of the inputs does not match a particular mode, but all the

other inputs do, the Flight Mode Interpreter must still be able to make a decision for that mode.  The

one input that does not match may reflect differences in pilot technique, a pilot’s error, a

malfunctioning sensor, or poorly defined membership functions.  The term “anomaly” has been

useful in describing these situations.

Figure 13 shows a three-dimensional state space and a region defined by three one-

dimensional membership functions.  For simplicity the one-dimensional membership functions are

crisp.  Because they are crisp, the diagram is general for both fuzzy min and probabilistic product.

If any of the three variables fall outside the membership functions of its domain, the system is

deemed completely out of the partition shown.  In other words, the possibility of an anomaly is not

considered.

In real world applications, like the Flight Mode Interpreter, the possibility for anomalous

conditions are real and problematic.  Several ways of preventing anomalous inputs from zeroing the

inferences have been considered during the development of the Flight Mode Interpreter.  The

following sections explain the benefits and drawbacks of each.
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Figure 13.  The intersection of membership functions in a three-dimensional state space.

Probabilistic Union

The first proposed method for dealing with anomalous inputs in fuzzy systems is to use

probabilistic union (or fuzzy max) when evaluating the rules.  This is equivalent to interpreting the

rules as

IF  is  OR....OR  is ,  THEN domain fuzzy set domain fuzzy set resulti i m m .

In this case, if any of the domains match their respective fuzzy set, the result is concluded.

Mathematically, the inference can be expressed as

( ) ( )( )µ µx x x xN i i
i

N

1 2
1

1 1, ,... = − −
=

∏ (24)

The partition that this method builds is quite different from probabilistic intersection of  Figure 13.

Figure 14 shows the state space partition resulting from interpreting the rules using probabilistic

union.  While this scheme allows for the presence of anomalies during inference, it overextends the

region being modeled and is therefore not an acceptable method.
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Figure 14.  The union of membership functions in a three-dimensional space.

Anomaly Threshold

The method originally proposed and implemented by Economides [9] to deal with anomalies

is the setting of a threshold of membership values on all the inputs.  That is, if the degree of

membership of a variable in a particular domain’s fuzzy set is below a certain threshold, τ, do not

allow that variable to unduly eliminate the decision for that mode.  Rather, reduce the degree of

membership of that inference by multiplying by the threshold.  Mathematically, the rule of inference

changes from equation (23) to

( ) ( )( )µ µ τx x x xN i i
i

N

1 2
1

, ,... max ,=
=

∏ . (25)

This is equivalent to limiting the minimum value of a membership function to τ, as shown in Figure

15. The effect on the modeled state space is shown in Figure 16.  Notice that the state space is

completely covered such that any input would have at least a degree of membership of τ3 in the

modeled region.
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Figure 15.  Effect on membership functions when setting a threshold.
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Figure 16.  The modeled region in state space when using a threshold.

Normalized Sum

The author proposes a third method for addressing the issue of anomalous inputs.  The use

of a normalized sum is an intuitive method for calculating the certainty associated with a fuzzy

decision.  The normalized sum is calculated as shown in equation (26).

( ) ( )µ µx x x
N

xN i i
i

N

1 2
1

1
, ,... =

=
∑ (26)
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This method is not based on the probabilistic union of the fuzzy sets.  Rather, the summation

reflects an increasing certainty as more evidence supporting a particular decision is evaluated.  The

normalized sum more closely resembles the anomaly threshold method, as shown in      Figure 17.

x1

x2

x3

µ(x1, x2, x3) = 1

µ(x1, x2, x3) = (N-1)/N 

µ(x1, x2, x3) = (N-2)/N 

Figure 17.  The modeled region in state space when using a normalized sum.

Figure 13 - Figure 17 illustrate the multidimensional regions generated by modeling

uncertainty in the fuzzy rules using the probabilistic intersection, the probabilistic union, an

anomaly threshold, and a normalized sum.  For simplicity of illustration, the regions were generated

assuming non-fuzzy intervals on the three input domains.  Another important comparison reveals

differences when the inputs are fuzzy.  Figure 18 shows four plots of µ(x1, x2) as functions of µ(x1)

and µ(x2) using the four different methods outlined above.

The first plot, labeled “probabilistic intersection,” reveals the basic problem of ignoring the

possibility of anomalies.  If either of the membership functions µ(x1) or µ(x2) evaluate to zero, the

entire inference evaluates to zero.  Compare this to the “probabilistic union” in which if either of the

membership functions µ(x1) or µ(x2) evaluate to one, the entire inference evaluates to one.  Neither

are an acceptable inference method if anomalies are anticipated, especially as the number of inputs

increases.  Setting a threshold on the degree of memberships is an improvement.  However, notice

the regions in which µi(xi) < τ.  In these regions, a change in input does not always translate into a
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change in the certainty of the inference.  The inference is constant even as the degree of certainty on

the input increases or decreases.
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Anomaly Threshold Normalized Sum

Figure 18.  The effect of the inference method in the fuzzy regions of the state space.

The fourth plot of Figure 18, labeled “normalized sum,” does not exhibit any of these

negative characteristics.  This method of inference prevents anomalies from “zeroing out” an

inference, unlike a straight probabilistic intersection.  Notice how the edges of the surface always

decrease for a decreasing µi(xi).  That is, monotonicity is preserved.  In fact, for all decreasing

µi(xi), the inference decreases.  For these reasons, the normalized sum is the superior inference

method when anomalous inputs are of concern.

Summary

This chapter included an unified approach to fuzzy decision theory from the perspective of

Bayesian probability.  The parallels between fuzzy set theory and Bayesian probability theory were

discussed and demonstrated with an example.  Finally, the three variations the standard inference

mechanism were compared on the basis of their robustness to anomalous inputs.  The theory
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presented in this chapter has proven invaluable in the implementation of the Flight Mode Interpreter.

Chapter IV includes an in-depth look at the Flight Mode Interpreter in the context of the fuzzy

decision theory which was presented in this chapter.  The following chapter explores the issue of

dimensionality in fuzzy systems.



30

CHAPTER III

DIMENSIONALITY IN FUZZY SYSTEMS

ONE-DIMENSIONAL FUZZY SYSTEMS

The current state of the art in fuzzy system design is the use of one-dimensional fuzzy sets.

Each input variable to the fuzzy system is partitioned into fuzzy sets.  The fuzzy set definitions on

one input are independent of the value of other inputs.  A fuzzy rule base combines these one-

dimensional fuzzy sets on the input space, and maps them to the system’s output space.  As the

number of inputs increase, the size of the rule base grows exponentially.  The use of fuzzy inference

for flight mode interpretation has revealed that this standard fuzzy logic approach is insufficient for

application in complex systems.  To address some fundamental shortcomings in the current state-of-

the-art, the author has developed the hypertrapezoidal fuzzy membership function (HFMF).  This

chapter explains the motivation and theory of this new technique.  Additionally, system

architectures are explored as a method for managing complex fuzzy systems.

Correlation

Correlation between input variables of a fuzzy system can lead to complications in current

fuzzy techniques based on one-dimensional membership functions.  By “correlation” is meant the

condition that a fuzzy set describing a system state is represented by an irregular, smoothly

connected region in a multivariable state space.  The “footprint” of such a mode on the x-y plane

could look something like the solid ellipse in Figure 19.  One-dimensional membership functions

cannot by themselves represent such a relationship.  The current practice approximates a smooth

representation by composition of two or more single-variable regions.  Such a composition is shown

in dashed lines on Figure 19.  An N-dimensional fuzzy membership function scheme should be able

to account for correlation between the domains that define a set.
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Figure 19.  Footprint of fuzzy set when the input variables are correlated.

Rule Base Composition

The most common method of defining an N-dimensional fuzzy relationship between the

variables of a system is using rule base composition.  While the N-dimensional fuzzy membership

function is not explicitly defined, the effect of fuzzy implication is a mapping from the N-

dimensional space onto a degree of membership in a composite set.  One-dimensional membership

functions are defined on each domain and the multidimensional composition is accomplished

through the fuzzy if/then rules.

The obvious advantage that rule base composition has over explicit definition of

multidimensional sets is the simplicity with which the one-dimensional membership functions are

defined.  The visualization and specification in multidimensional space becomes very difficult for N

> 3.  The disadvantage then is that only certain basic shapes can result from rule base composition.

Namely, the sets defined by if/then rules have rectangular footprints, as illustrated in Figure 19.

There is another disadvantage to rule base composition that may not be immediately

noticeable.  There is the possibility of unintended “valleys” forming on the state space of the inputs.

Consider a simple system with inputs x1 and x2 and output y.  Let x1 and x2 be partitioned into three

fuzzy sets each as shown in Figure 20.  Nine rules are required to completely cover the input space.

Table 1 lists the rules.
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Figure 20.  Fuzzy sets of rule base composition example.

Table 1.

Fuzzy rules for a simple example of rule base composition.

IF x1 and x2 THEN y x2 is NEGATIVE x2 is ZERO x2 is POSITIVE

x1 is LOW y is SMALL y is MEDIUM y is MEDIUM

x1 is MEDIUM y is MEDIUM y is LARGE y is LARGE

x1 is HIGH y is SMALL y is MEDIUM y is MEDIUM

Of interest is the degree of membership in the output set LARGE, as a function of the inputs

x1 and x2 as shown in Figure 21.  Notice that as x1 is held constant at 5 (approximately MEDIUM)

and x2 varies from 0 to 5 (from ZERO to POSITIVE), the degree of membership in the set LARGE

“dips”.  From the rule base in Table 1, there is no reason for the degree of membership in LARGE

to decrease in that range.  In effect, the desired multidimensional relationship has been inadequately

approximated by the rule base composition.  It should be noted that the connectives and aggregation

methods used in Figure 21 are consistent with the Bayesian perspective of fuzzy logic.  For the

min/max operators, the “valley” is even more exaggerated.
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Conditional Membership Functions

For systems with correlation between two variables, x1 and x2, the one-dimensional

membership functions describing a fuzzy set A are of the form µA(x1|x2) and µA(x2|x1).  Correlation

of membership can be approximated by designing conditional membership functions.  This is a

brute force method of specifying µA(x1 | x2 = Xk) for k = 1, 2, …, K.  This requires K one-

dimensional fuzzy set definitions for each set or mode.  In the case that Xj < X* < Xj+1, an

interpolation must be done to approximate µA(x1 | x2 = X*).

This method has been successfully used in a 737 auto-pilot simulation [23].  In [23], Lass’s

simulated auto-pilot required that the aircraft remain inside a fuzzy operational mode during its

descent.  The mode was defined on the state space of indicated airspeed and altitude.  The desired

mode of operation formed a “tunnel” through state space that could not be defined by one-

dimensional membership functions.  Lass determined that a rule base composition of the desirable

operation region would also be impractical.  Consequently, Lass defined conditional fuzzy

membership functions of altitude for certain intervals of airspeed.
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Conditional membership functions can account for correlation in the state space, but lacks

efficiency, is arduous to tune, and is not extendible to N dimensions.  For each “corner” in the state

space, a pair of membership functions must be designed.  With each modification in one plane, the

parameters for the other planes must be adjusted.  In effect, the tent-shaped membership functions

are defined piece by piece, which does not generalize to a state space of more than two variables.  A

method is needed for designing N-dimensional membership functions.

PDF-BASED FUZZY MEMBERSHIP FUNCTIONS

All the previous work in the area of multidimensional membership functions encountered by

the author is based on the Gaussian probability density function.  The Gaussian PDF is easily

extendible to N dimensions.  It can be expressed with one mathematical expression and is

differentiable over the entire surface.  The general Gaussian membership function is shown in

equation (27).  The trapezoid, on the other hand, requires a piece-wise definition and is not

everywhere differentiable.

( )µ
σA A

Ax a
x x

= −
−



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











exp
1

2

2

(27)

The extension to N dimensions is accomplished by simply allowing x in equation (27) to be

a vector.  Multidimensional Gaussian membership functions have proved especially useful in the

areas of clustering [3] and training [40].

One disadvantage to the multidimensional Gaussian membership function is the fact that the

membership function evaluates to unity at only a single point in state space.  It is the Gaussian

equivalent of the triangular membership function.  Foster and Khambhampati [10] address this

issue by extending the unity point of the Gaussian density along a vector in state space.       Figure

22 shows a Gaussian membership function defined on a two-dimensional space, with a vector from

(4, 6) to (6, 4) defining the top ridge.
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Figure 22.  A two-dimensional Gaussian membership function.

HYPERTRAPEZOIDAL FUZZY MEMBERSHIP FUNCTIONS

One-dimensional Trapezoids

An important consideration in the development of N-dimensional membership functions is

that they be specified with only a few parameters.  The standard method for defining one-

dimensional trapezoidal membership functions is with four points – a, b, c, and d, as shown in

Figure 23.  This method, however, is impractical for defining membership functions on multiple

dimensions.

0
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1

a b c d
x

µ(x)

Figure 23.  Defining a one-dimensional trapezoidal membership function.

The extension of the trapezoidal membership function into a two-dimensional space would require

at least eight points, as shown in Figure 24.
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Figure 24.  Two-dimensional trapezoidal membership function.

Fuzzy Partitionings

Another important consideration is that the multidimensional fuzzy sets should enforce the

alternate fuzzy logic connectives, originally compared by Bellman and Zadeh [2].  These are the

usual connectives of the Bayes version of fuzzy logic [28], wherein the membership values sum to

unity.  That is, for membership functions µi(x),

( )µi
i

x x= ∀∑ 1   (28)

Membership functions defined in such a manner are referred to as a fuzzy partitioning.  Fuzzy

membership functions based on Gaussian probability density functions can easily be extended to N

dimensions.  However, they do not exhibit the desirable property of equation (28).  Trapezoidal

membership functions, on the other hand, can be defined with the design constraint of       equation

(28).

Derivation of Hypertrapezoidal Fuzzy Membership Functions

Based on the requirements outlined above, the author developed a new mechanism for

specifying and calculating multidimensional fuzzy membership functions [22].  Termed

hypertrapezoidal fuzzy membership functions, this new development is a major advancement in the

practical application of fuzzy logic to engineering problems.

As an alternative to trying to define all the corners of N-dimensional fuzzy sets, consider

the use of a single point in the state space as the defining parameter of an N-dimensional fuzzy set.

Each fuzzy set in a fuzzy partitioning would then have an associated N-dimensional vector which is

a typical value for that set.  The author chose to call such an N-dimensional vector the  prototype
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point.  The prototype point, λi, for a fuzzy set, Si, with a membership function, µi(x), satisfies the

following equations.

µ λ
µ λ

i i

j i j i

( )

( )

=
= ≠

1

0    
(29)

Figure 25 shows a simple example of a fuzzy partitioning in two dimensions using three

prototype points to define three fuzzy sets.

λ1

x1

x2

λ2

λ3

set overlap

Figure 25.  Prototype points defining a fuzzy partitioning.

A measured value, x, which is an N-dimensional point in the state space of a fuzzy

partitioning, has a degree of membership in a fuzzy set based on its Euclidean distance from the

prototype point for that set.  For example, if x = λ1, then µ1(x) = 1, µ2(x) = 0, and µ3(x) = 0.  As

another example, if x is equidistant from all three prototype points, then µ1(x) = 0.333, µ2(x) =

0.333, and µ3(x) = 0.333.  This is the basis of hypertrapezoidal fuzzy membership functions and has

proven to be quite useful in inferring operational flight modes of an aircraft.

One additional parameter is needed for defining an N-dimensional fuzzy partitioning.  The

crispness factor determines how much overlap exists between the sets of two adjacent prototype

points.  The author chose to define the range of the crispness factor, σ, to be [0, 1].  For σ = 1, no

overlap exists between the sets, and the partitioning reduces to a minimum distance classifier.

Figure 26 shows the resulting partitions of the above example for the two extremes σ = 0 and       σ

= 1.
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Figure 26.  The effect of σ on a two-dimensional fuzzy partitioning.

Such a scheme for defining fuzzy sets can also be used to define standard one-dimensional

fuzzy partitions.  Figure 27 illustrates how varying σ in a one-dimensional partition evolves the

membership functions from triangular fuzzy sets, through trapezoidal fuzzy sets, and finally to

crisp, non-fuzzy sets.
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Figure 27.  The effect of σ on one-dimensional fuzzy sets.

The author chose to define the crispness factor according to equation (30) and Figure 28.

σ α= 2

d
(30)
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Figure 28.  Defining the overlap of a fuzzy partition.

Given a sensor measurement, x, the HFMFs can now be calculated using standard

trigonometry.  First, a distance measure, ρi|j, is calculated for each pair of prototype points, as

shown in equation (31).  Here, d(x,y) is the Euclidean distance between x and y.

( ) ( ) ( )
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(31)

Then the pair-wise membership functions are calculated for each pair of prototype points,

as shown in equation (32).  Here, 
v

v ji  is a vector from λj to λi, 
v

v jx  is a vector from λj to x, and

v v

v vji jx⋅  is the dot product of the two vectors.
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Finally, the degree of membership, µi(x), of measured input, x, can be determined in one of

two ways.  The first is based on product inference and is shown in equation (33).  The second is

based on fuzzy-min inference and is shown in equation (34).  Both are normalized such that

equation (28) is satisfied.  Here, M is the number of fuzzy sets in the partition.
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Notice that equations (30) - (34) are general for N dimensions, including N=1.  These four

equations allow for the design of N-dimensional membership functions using only N+1 parameters.

Additionally, the desirable property of equation (28) is enforced.

Examples of Hypertrapezoidal Fuzzy Membership Functions

The following diagrams are examples of fuzzy membership functions designed using the

described technique of equations (30) - (34).  All the examples use the product inference of equation

(33).  Figure 29 shows an example of three fuzzy sets defined on two domains.  The definition of

the three sets is accomplished with the following parameters:  λ1 = (9, 1), λ2 = (5, 5), λ3 = (1, 9),

and σ = 0.5.
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Figure 29.  Example of three fuzzy sets defined on a two-dimensional space.

A rule base operating on one-dimensional sets could only approximate the correlation

represented in Figure 29.  In this case, a transformation of the axes could also compensate for the
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correlation.  While simple, the example shows how the prototype points and crispness factor define

a fuzzy partition.  A more complex example is shown in Figure 30,  for which a transformation of

axes could not compensate for the correlation between the inputs.
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Figure 30.  Example of four fuzzy sets defined on a two-dimensional space.

Hypertrapezoidal fuzzy membership functions have proven to be a valuable asset for the

flight mode interpretation problem.  Detailed examples of multidimensional fuzzy sets designed for

flight mode interpretation are shown in Chapter IV.  The remainder of this chapter explores other

methods for dealing with dimensionality in complex systems.

FUZZY SYSTEM ARCHITECTURES

The following sections document several architectures that can be used to design complex

fuzzy systems involving high dimensionality.  Practical examples are given in which these

architectures have been successfully utilized in industry.

Multilevel Rule Bases

As mentioned earlier, a major obstacle for designing complex fuzzy systems is the size of

the rule base.  Multidimensional membership functions decrease rule base size by moving some of

the dimensionality out of the rule base and into the fuzzy set definitions.  Another technique is to

divide the inference stage of a fuzzy system into two or more stages.  Multilevel rule bases divide

the inference stage either for the purpose of intermediary set composition or for an hierarchical

inference strategy.
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The set composition model of a multilevel rule base is useful for separating a heuristic

system identification stage from the control stage of a fuzzy rule base.  The first rule base in the set

composition model is responsible for determining the qualitative state of the system being observed

or controlled.  The second rule base uses the inferred system state to determine the desired action or

control.  Figure 31 shows the general structure for the set composition model of a multilevel rule

base.

Fuzzy sets describing
the system state

Fuzzy
inputs

Set
Composition

Level

Action or
Control
Level

Multilevel Rule Base

Fuzzy
outputs

Figure 31.  General architecture for set composition model.

This approach for dividing the fuzzy rules into two manageable modules has proven useful

in the area of general aviation pilot advisement.  The ASTRA project seeks to improve situational

awareness of the pilots in small aircraft.  Improved situational awareness should lead to increased

safety in high workload situations.  Feedback to the pilot about the qualitative state of the aircraft

can be provided through the use of a multilevel fuzzy rule base.

The ASTRA fuzzy inference scheme is a good example of the set composition model for a

multilevel rule base.  The fuzzy inputs to the ASTRA inference module are the degrees of

membership in fuzzy modes defined on the state space of several flight variables.  These variables

include indicated airspeed, angle of attack, altitude, etc. The output of the first rule base level is a

qualitative characterization of the operational mode of the aircraft.  The operational mode of the

aircraft is the intermediary set which indicates not only the stage of the flight (i.e. cruise, initial

approach, etc.) but also any anomalies in the aircraft state (i.e. incorrect flap setting, unusual

altitude or speed, etc.).  Thus, situation recognition is separated from, and subsequently becomes

the input to, generating the advice to the pilot.

The hierarchical model of a multilevel rule base is useful for separating different levels of

goals.  For example, the high-level planning that goes into determining the desired position for a
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robotic arm could be separated from the mid-level goal of determining a feasible trajectory to get it

there.  A third level could even calculate the necessary control inputs to the joint motors, a low-level

task.  As shown in Figure 32, the hierarchical model divides the overall inference process into

manageable sub-goals.

The large number of applications of “supervisory servo control” would fall into this

category.  See for example [25] and [32].  Supervisor servo control is a two-level hierarchical

control architecture.  The low-level functional block is a traditional numerical controller.  The high-

level functional block is a rule-based controller that compensates for nonlinearities in the system, or

different operational modes of the system.  The supervisory level may adjust parameters in the low-

level controller, or manipulate reference points.

High Level Planner

Managerial Tasks

Low Level Calculations

Solution Strategies

Solution Parameters

Sensor readings or problem statement

Multilevel Rule Base

Control output or resulting action

Figure 32.  General structure of the hierarchical model.

A hierarchical architecture leads to advantages in both the area of training and hybrid

combinations of intelligent control techniques.  Separating the sub-goals of a knowledge-based

system allows the designer to tailor the subsystems to better solve the unique problem of each level.
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Nowhere has the hierarchical model demonstrated its usefulness more than in the area of

robotics.  As an example, Fukuda and Shibata propose a hierarchical control system for intelligent

robotics and mechatronics [11].  The proposed system has three levels.  The highest level is a fuzzy

inference mechanism that “manipulates symbols to reason logically for control strategies.”  The

second level uses a fuzzy neural network to produce control references based on the high level

control strategy.  The final level is a neural network servo controller which provides inputs to the

robot motors based on the computed control references of level two.  The authors show that the

hierarchical nature of such a system architecture allows hybrid combinations of AI, fuzzy, neural,

and genetic techniques to take advantage of their individual strengths.

An useful observation was made by Cleveland and Meystel [7] in their design of a

hierarchical fuzzy system for an industrial sprayer.  They comment that, at lower levels, a higher

resolution of data is needed.  These different requirements for data resolution translated into

different sampling rates.  The highest level in their architecture performed heuristic searches at the

rate of 1 Hz, while a PID controller in the lowest level operated at 1000 Hz.  Intermediary fuzzy

logic controllers had a sampling rate of 100 Hz.  Such an arrangement also prevents the supervisory

levels from responding to high frequency sensor noise.

Parallel Fuzzy Systems

Like multilevel rule bases, parallel fuzzy systems can be subdivided into two groups – the

competitive model and the cooperative model.  Both offer a way to divide a potentially

unmanageable rule base into manageable sub-components.

The competitive model of parallel fuzzy systems relies on two or more fuzzy systems

operating in the same domain, as illustrated in Figure 33.  They would generally have the same

inputs, yet produce different outputs.  Their different outputs might reflect opposing goals or

different assumptions used to build their respective rule bases.  A means of resolving the conflicting

recommendations of the parallel expert systems is needed.  Sometimes the respective outputs can

simply be averaged.  In other applications, a more sophisticated mechanism for choosing or

resolving the competitive results may be required.  The competitive model of parallel expert systems

has been used extensively at the Knowledge Based Signal Processing Lab of Texas A&M

University.
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Figure 33.  System architecture for parallel competitive fuzzy systems.

For example, Jowers [19] incorporated what he called Local Area Experts (LAE) into an

intelligent signal processing tool for real-time diagnoses.  In his words,

…the purpose here is not to develop a single, real-time, all encompassing pattern

recognition expert, but rather, to develop local experts, all of which simultaneously

process data and submit opinions to the LAE manager.  The manager then makes a

selection…  The partitioning of the problem domain minimizes the overhead of

each LAE and allows for faster processing of the data at the local level.  This

design also takes advantage of benefits proffered by the ‘parallel processing

community’.

Economides [9] applied this approach to aircraft flight control.  He created several parallel

Flight Mode Experts.  Each expert was essentially a fuzzy system designed to recognize a particular

operational mode of an aircraft.  The experts reported to an Interpreter which made a decision about

the aircraft’s current state.  Economides extended Jowers work by including the concept of

confidence.  While each Flight Mode Expert reported to an Interpreter its belief that the aircraft was
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operating in its respective mode, the Interpreter also generated a confidence factor based on that

information.

Other examples of competitive fuzzy systems can be found in [13] and [15].  Halgamuge,

et. al. apply the use of  two competing fuzzy systems to the nonlinear test problem of backing up a

truck and trailer [15].  One of the fuzzy systems is an expert on driving the truck when the angle

between the truck and trailer is small.  The other fuzzy system is an expert on driving the truck

when the angle is large.  Both systems calculate a steering wheel input and the final result is

computed based on fuzzy sets defined for the angle between the truck and trailer.  The authors point

to the advantage of the parallel fuzzy systems.  “If different strategies are implemented in one single

fuzzy controller, validation, maintenance and error correction become almost impossible.”

Control of an inverted pendulum, known as the “cart and pole problem,” has become the

standard test bed for fuzzy system algorithms.  In [18], Katai, et. al. simulate the control of an

inverted pendulum using two, parallel, competitive fuzzy systems.  The decomposition of the system

is accomplished by decoupling the goal of controlling the pendulum from the goal of controlling the

cart.  The resulting fuzzy sets from the two parallel rule bases are combined by the maximum

aggregation operation.  Defuzzification using the centroid method results in the force which should

be applied to the cart.  The authors show the advantage of segmenting the fuzzy inference stage for

genetic algorithm training.

Cooperative parallel fuzzy systems, illustrated in Figure 34, distinguish themselves from

their competitive counterparts by the fact that each fuzzy system is responsible for a different sub-

problem.  They may or may not have the same inputs, but their outputs are in different domains.

Each rule base is designed independently to make inferences about its own area of specialty.  The

outputs of the individual expert systems do not need to be resolved, as is the case for the

competitive model.  This model lends itself well to a distributed computing environment in which

the overall problem can be partitioned into separable sub-problems.  A mechanism may be needed

to allow the parallel systems to share their respective inferred knowledge.



47

Fuzzy System #1

Fuzzy System #2

Fuzzy System #3

Fuzzy System #N

Distributed Computing
Environment

Figure 34.  System architecture for parallel cooperative systems.

The advantage of the cooperative model is the distributed nature of the architecture.  The

parallel systems can be developed by several individuals with expertise in the respective problem

domains.  Furthermore, the parallel fuzzy systems can be run on separate, and even remote

machines.  The emerging field of mobile software agents could find significant application in

networks using such an architecture.

In [12], Ghabri and Ladet describe a set of  fuzzy controllers that could be classified into

this category of parallel cooperative systems.  The application domain is an automated

manufacturing and production system in which each component is controlled by a fuzzy system.

Because of interdependence between the various systems, the researchers developed a mechanism

through which the parallel fuzzy systems were able to utilize information from each other.  They

named their architecture Fuzzy Logic Based Distributed Control Systems with Interaction.

Summary

The “curse of dimensionality” is beginning to plague the field of applied fuzzy logic.  One

solution to this curse is the separation of the problem into more manageable and more easily

maintained sub-systems.  The author has outlined some of the fuzzy system architectures that have

emerged, including architectures motivated by the ASTRA project.  More importantly, the author

presented a revolutionary method for modeling correlated, multidimensional fuzzy sets.  The next

chapter will show how hypertrapezoidal fuzzy membership functions are being used to perform

flight mode interpretation.
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CHAPTER IV

MULTIDIMENSIONAL FLIGHT MODE INTERPRETATION

AUTOMATED SAFETY AND TRAINING AVIONICS

The theory and design principles presented in this dissertation are directly motivated by an

on-going research effort at Texas A&M University.  The Automated Safety and Training Avionics

(ASTRA) program is a human-centered design project [33] with the goal of improving the safety and

training of pilots of general aviation aircraft.  The ASTRA system monitors and advises the pilot in

procedures and navigation.  In order to monitor and advise, the on-board avionics must maintain a

qualitative understanding of the operational state of the aircraft.  This operational state is called the

flight mode.  The avionics system that determines the flight mode is the Flight Mode Interpreter

(FMI).  According to one of the principle system designers of ASTRA, the FMI is the “heart” of the

system [39].

The FMI is the heart of the ASTRA system for two reasons.  First, one of the primary

features of the ASTRA system is automatic mode switching.  Automatic mode switching is what

enables the ASTRA system to dynamically and automatically reconfigure the pilot interfaces.  The

pilot interfaces include the head-down display (HDD) and the head-up display (HUD).  According

to Trang, U.S. Army test pilot and a system designer of ASTRA, automatic mode switching can

increase situational awareness and reduce pilot errors [39].  The second reason that the FMI can be

considered the heart of the ASTRA system is that the advice generated by the system for the pilot is

mode-dependent.  The Pilot Advisor software module is responsible for generating advice based on

the current flight mode.  If the FMI can not determine the appropriate operational mode of the

aircraft, the ASTRA system is useless.

Not only is the Flight Mode Interpreter an essential element of the ASTRA system, it is also

a significant technological advancement for the avionics industry.  It performs a pattern recognition

function which is not implemented in any commercially available avionics system.  In 1995, NASA

selected GAPATS (General Aviation Pilot Advisory and Training System), an implementation of

ASTRA, for commercialization funding [29] and the State of Texas included ASTRA in the State of

Texas Advanced Technology Program [41].  The current phase of the ASTRA program includes

flight tests scheduled for the fourth quarter of 1997.
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THE ENGINEERING FLIGHT SIMULATOR

The development and evaluation of the ASTRA system is being performed in the Texas

A&M Engineering Flight Simulator (EFS).  The EFS, maintained by the Department of Aerospace

Engineering, is a fixed-based simulator powered by a Silicon Graphics Reality 2 Graphics

Workstation, a R4400 processor, and a three-screen projection system, as shown in Figure 35.  A

refurbished T-37 cockpit serves as the cockpit of the simulator, as shown in Figure 36.  Two

computer monitors inside the cockpit provide configurable displays for instrument and head-down

displays.  The cockpit includes both force and displacement sticks to further facilitate the simulation

of various aircraft.  The simulator also consists of a network of PCs which receive flight data from

the Silicon Graphics computer over an ethernet.  The PCs are responsible for driving the instrument

displays, head-down displays and head-up displays.

The test vehicle for the ASTRA project is a Rockwell Commander 700 twin engine aircraft

owned by Texas A&M.  One of the aircraft models in the simulator is the Rockwell Commander

700.  A system like ASTRA could not be developed without a development environment like the

EFS.  An on-going goal of the ASTRA team is that the ASTRA system functions identically whether

connected to the simulator, or installed in the actual aircraft.  Careful planning and modular designs

will continue to allow the EFS to be the ideal development and testing platform for advanced

cockpit avionics.

Figure 35.  The Engineering Flight Simulator projectors.
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Figure 36.  The Engineering Flight Simulator cockpit.

THE FLIGHT MODES

As mentioned in Chapter I and emphasized in the previous section, the Flight Mode

Interpreter plays an essential role in the task of improving the pilot’s situational awareness.  The

reason for this is obvious.  In order to improve the pilot’s situational awareness, the computer must

maintain its own situational awareness.  Indeed, one of the names used for the Flight Mode

Interpreter is “Situation Recognizer.”  What situations then should this “Situation Recognizer”

recognize?

At this stage in the development of ASTRA, the flight modes being identified are nominal

flight procedures.  For example, the Flight Mode Interpreter currently identifies when a pilot is

flying a final approach, but does not attempt to identify when the aircraft is nearing a stall.  A stall

could occur during a final approach and cause an emergency situation.  In the current ASTRA

design, non-nominal conditions are identified by the Pilot Advisor module, which constantly

monitors for hazardous situations like stalls, regardless of the FMI indicated flight mode.  Some

non-nominal conditions are mode-dependent, in which case the Pilot Advisor uses the FMI indicated

flight mode to analyze the flight conditions.

The separation of the responsibility for flight mode identification and for anomaly detection

was an important decision in the development of ASTRA.  As will be discussed later, it resulted in a

new design philosophy for the fuzzy membership functions of the Flight Mode Interpreter.  It is also

consistent with the experiences of other researchers of knowledge-based decision aids.  The Hazards

Monitoring research of Search Technologies, Inc. maintains linked “situation nodes” in their pilot

assistant software [35].  Each situation node has an associated list of “expectations.”  When a

situation is identified, the list of expectations associated with that situation are confirmed.  If an

expectation is not met, an appropriate message is issued to the pilot.
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There are then two primary considerations when choosing which flight modes should be

identified.  First, what operational procedures will likely benefit from having the Pilot Advisor

monitor the pilot’s actions?  Secondly, at which stages of the flight could the pilot’s performance be

enhanced or his work load be reduced by the system?  The flight modes used in the current ASTRA

effort all meet these criteria.  However, as will be discussed in Chapter V, there is a need for one or

two additional flight modes.  These additional flight modes will augment the usefulness

demonstrated by the current ASTRA design.

Why use fuzzy sets to model the flight modes?  After all, the flight mode decision is a crisp

decision.  The automatic mode switching of the flight displays requires a crisp specification of the

flight mode.  If the aircraft state configuration indicates a degree of membership in mode A, and a

degree of membership in mode B, the pilot would not want to see a cluttered overlay of two different

displays.  While the flight mode decision must be a crisp all-or-nothing decision, the flight modes do

overlap in the state space and fuzzy sets are an excellent model of the ambiguity in defining the

flight modes.  However, there is another motivation for using fuzzy models of the flight modes.  The

degree of memberships in the fuzzy flight modes can be interpreted as a measure of certainty and

used to derive confidences of the flight mode decisions.  These certainties and confidence factors

allow for filtering the mode decision, an important capability, as will be shown.

QUANTIFYING RESULTS

The measure of the FMI’s performance is how closely its mode decision matches the

intended mode of the pilot.  During testing of the FMI, the pilot indicates what mode best

characterizes the current situation.  The FMI should come reasonably close to selecting the same

mode based solely on sensor data.  The plot of Figure 37 is a good example of the FMI’s ability to

emulate what the pilot considers to be the modes for an entire flight from takeoff to touchdown.

This plot was generated using simulation data from the A&M Engineering Flight Simulator utilizing

the Commander 700 model.

Notice that the computer’s inference may slightly lead the pilot’s stated mode (e.g., the

climbout to cruise transition).  At other times the computer may lag in the inference (e.g., the cruise

to initapp transition).  However, the FMI’s output follows closely enough to allow the Pilot Advisor

to give meaningful and timely messages through all seven stages of the flight.

The ability to understand and quantify the performance of the Flight Mode Interpreter was

significantly enhanced by the author’s development of a MATLAB toolbox for flight mode
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interpretation.  The analysis enabled by the toolbox is the focus of this chapter.  Appendix B

describes the FMI MATLAB Toolbox.

Flight time

taxi
takeoff

climbout
cruise

initapp
finalapp
landing

Pilot
FMI

Figure 37.  Plot of both pilot’s and inferred flight mode.

ONE-DIMENSIONAL FMI BASELINE

The Flight Mode Interpreter of the ASTRA system classifies the operating condition of the

aircraft into one of seven predefined modes.  The seven operational modes are shown in Table 2.

These were the seven modes used in Harral’s Flight Mode Interpreter [17].  The FMI performs the

flight mode classification based on input variables that are provided by the sensor suite of the

aircraft.  Table 3 lists the sensed values originally used by Harral in his prototype FMI.  These

eight variables form an eight-dimensional space of aircraft operation.  At any given time in a flight,

the aircraft’s state can be quantified as a single point in that eight-dimensional space.  The job of

the FMI is to partition that space into seven different operational modes.  Harral’s FMI served as

the baseline Flight Mode Interpreter for the upgrades and new developments detailed in this chapter.
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Certainty and Confidence

The Flight Mode Interpreter not only produces a qualitative description of the current state

of the aircraft, but also provides two measures of that description – the certainty and the confidence.

Both measures are in the range of [0, 1].  The certainty is simply the degree of membership that a

state vector has in the multidimensional fuzzy set for each mode.  The multidimensional fuzzy

Table 2.

Flight modes identified by the FMI.

OPERATIONAL FLIGHT MODES

taxi

takeoff

climbout

cruise

initial approach

final approach

landing

Table 3.

Inputs to the baseline FMI.

FMI INPUTS
engine power

angle of attack

roll

landing gear setting

flap setting

indicated airspeed

altitude

rate of climb
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modes can be implemented by a composition of one-dimensional fuzzy sets defined in the domains

of each input variable.  For example, to determine if the airplane is currently in the takeoff mode,

the sensor readings for the altitude, thrust, rate of climb, etc. are independently calculated using the

corresponding takeoff fuzzy sets.  The certainty is the Bayesian probability of a mode, given the

sensor readings.  The one-dimensional fuzzy sets implemented in the first prototype are shown in

Table 4.

Another calculation has proven useful in understanding the confidence associated with a

particular flight mode decision.  The confidence is calculated based on the flight modes with the

highest and second highest certainty values.  If C1 is the certainty of the chosen mode, and C2 is the

next highest calculated certainty, the confidence of a decision is defined as

Confidence C C
C C

C
( , )1 2

1 2

1

= −
(35)

The relationship between the mode certainties and the decision confidence is shown in Figure 38.

According to the Bayes isomorphism, the confidence of a decision is related to the odds of making

the wrong decision, as shown in Appendix A. The mode certainty is used to make the flight mode

decision and, as will be shown in the following section, can be used to filter the mode decision.

Mode 1 Mode 2

Input Vector

Mode
Certainty

Decide Mode 1 Decide Mode 2

Mode 1 Mode 2

Input Vector

Decision
Confidence

Decide Mode 1 Decide Mode 2

Figure 38.  The relationship between mode certainty and decision confidence.
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As the airplane transitions from one mode to another, the certainty values will inevitably

decrease for the current mode and increase for the next mode.  The FMI chooses the mode with the

highest certainty.  The confidence of that decision decreases as the transition is entered, and then

increases as the aircraft enters the next mode of operation.

Table 4.

Harral’s one-dimensional fuzzy membership functions.
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ONE-DIMENSIONAL FMI UPGRADE

The base-line FMI implemented by Harral proved that flight mode interpretation through

observation of aircraft configuration was a real possibility.  Harral’s work not only proved the

technology, but also provided a glimpse of the usefulness of such a system.  His carefully planned

designs and impeccable programming skills have allowed the ASTRA program to continue to

mature.  The author has implemented several important modifications to the one-dimensional

version of the FMI during this maturing process.  These upgrades to the one-dimensional FMI

significantly improved its performance.

Anomalies

Chapter II, page 22 includes a section dealing with uncertainty in fuzzy systems.  One of

the challenges in the flight mode interpretation problem is how to handle anomalous conditions that

do not match any of the modeled flight modes.  The method by which the base-line FMI treated

anomalies caused the flight mode decision to occasionally oscillate between flight modes.  Figure 39

shows such a situation in the transition from final approach to landing.
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Figure 39.  Anomalous inputs caused oscillations in base-line FMI.
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In shown in Figure 39, as the altitude decreases, the FMI’s decision oscillates between final

approach and landing because of the way the anomalous input (in this case, altitude) is included in

the certainty calculation.  By changing the certainty calculations to match        equation (25), of

page 25, the oscillations in the flight mode decision caused by anomalous inputs were eliminated.

FMI Tuning

The base-line FMI lacked a convenient method of measuring its performance and of

understanding the effect various parameters have on the flight mode decision.  The author needed a

development tool to allow graphical analysis of the FMI performance.  Appendix B describes a

suite of MATLAB functions that enable such an analysis.  The toolbox includes a function which

plots the flight mode decision for previously recorded flight data.  Figure 40 is a plot of the inferred

FMI flight mode and the pilot specified flight mode for a landing recorded in the EFS.  Clearly, the

FMI failed to adequately distinguish between takeoff and initapp flight modes.  Such plots of the

flight mode decision revealed the need to tune the fuzzy membership functions of Table 4.

500 550 600 650 700 750 800 850 900 950 1000

Flight time [sec]

taxi
takeoff

climbout
cruise

initapp
finalapp
landing

Pilot
FMI

Figure 40.  Plot of base-line FMI output for a landing.

While tuning the membership functions for the Flight Mode Interpreter, the author

recognized an improved philosophy for their design.  The base-line FMI was designed by

considering in what range a variable should be for a given mode.  For example, what should the

engine power be during an initial approach?  This design method was motivated by the fact that the

base-line FMI not only generated a flight mode decisions, but also identified “alarms.”  However, in

the ASTRA system, the Pilot Advisor module is now responsible for identifying the alarms, and so

the functionality of the FMI can now be limited to that of identifying the most probable flight mode.
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From a pilot’s perspective, this refocusing of the functionality of the FMI results in more

meaningful alarm messages, as discussed in [39].

The design philosophy of the upgraded one-dimensional FMI is based on the range in which

a variable could be, given a mode.  What could the engine power be during an initial approach?

Designing the fuzzy membership functions to meet the could be criteria resulted in a widening of the

membership functions, and more importantly, a more robust Flight Mode Interpreter.  Figure 41 is

the flight mode plotted for the tuned membership functions of the flight of Figure 40.  While still not

perfect, there is obvious improvement.
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Figure 41.  Plot of re-tuned FMI output for the landing of Figure 40.

The new design philosophy also motivated the ASTRA team to reexamine the inputs to the

FMI.  Of particular concern was whether the gear and flap positions should be used in making the

flight mode decision.  The pilot could forget to extend the gear before final approach and confuse

the FMI into thinking it was still in initial approach.  This problem was confirmed for both gear and

flaps in the EFS with the tuned FMI.  Consequently, gear and flap positions are no longer inputs to

the Flight Mode Interpreter.  Finally, through analysis using the author’s FMI analysis toolbox, the

angle-of-attack was found to not be a useful indicator of flight mode and is no longer used by the

FMI.

Decision Filtering

The plot of Figure 41 is an example of the improvement that was achieved by merely

adjusting the one-dimensional fuzzy membership functions of the FMI.  It also shows one of the

major short-comings of the base-line FMI.  The flight mode plot at the transition between  cruise

and initapp illustrates what the ASTRA team has termed “nervousness.”  In the ASTRA system,
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these types of oscillations translate into HUD symbology that comes and goes, and HDD messages

that flicker off and on.  The transitions from one mode to the next were especially susceptible to

nervousness.  The FMI needed some form of filtering on the decision.

The upgraded Flight Mode Interpreter includes the ability to filter the certainty values for

the individual modes.  The filter is a low-pass infinite impulse response filter.  Filtering the certainty

values helps eliminate the nervousness that the ASTRA team was observing near the transitions of

the modes.  Figure 42 is an example of nervousness at the transition between climbout and cruise.

Figure 43 is a plot of the FMI output for the same flight, but with filtering enabled.  Obviously, the

filtering significantly improves the flight mode decision.
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Figure 42.  Example of nervousness near mode transitions.
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Figure 43.  Flight mode decision with filtering, for flight of Figure 42.

The IIR filtering currently implemented in the FMI is the simple, single pole filter of

equation (36).  µA(k) are the “raw” certainty values and µA′(k) are the filtered certainty values.  Of
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utmost concern when filtering the flight mode decision is the resulting time delay introduced by the

filter.  Therefore, the coefficients have been parameterized to the time delay, td, of the filter and the

sampling frequency, fs.  Here, the time delay is the time it takes a unit step response to reach 0.9.

Because the IIR filter is filtering the certainty values, rather than the decision, the time delay, td, is

the approximate worst-case delay introduced by the IIR filter.  Generally, the decision delay

introduced by the filter will be less than td.

( ) ( ) ( )′ = ⋅ + ⋅ ′ −

≅
⋅

= −

µ µ µA A A
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Distance Inputs

The ASTRA team found the flight mode interpretation problem particularly challenging

during the approach and landing phase of a flight.  The FMI was more susceptible to nervousness

and even misclassification during the phase of the flight when an on-board advisory system needs to

be most useful.  In order to improve the FMI performance during initial approach, final approach

and landing, Trang proposed including the distances to various fixes of the approach as state

variables for the Flight Mode Interpreter [39].  The distances are listed in Table 5 and are made

available to the ASTRA system by the Navigation module.

An example of a condition listed in Trang’s thesis for inferring initial approach is (dAC-M ≥

dFM) ∩ (dAC-F ≤ dIF).  One complication with implementing this condition as a fuzzy rule in the

Table 5.

Distances used in upgraded FMI.

Distances Definition

aircraft to final approach fix dAC-F

aircraft to the missed approach pointdAC-M

initial approach fix to final approach fixdIF

final approach fix to missed approach pointdFM

missed approach point to airportdMA



62

Flight Mode Interpreter is that such rules will be different for each airport.  The fuzzy membership

function for dIF would be airport-dependent.  The author was motivated to formulate the rules

specified by Trang into a general, airport-independent format.  Such a formulation would allow one

set of membership functions to be used for any airport.

The author generalized the distance rules found in Trang’s thesis for any airport by forming

four ratios of the distances listed in Table 5.  Consider for example (dAC-M ≥ dFM) ∩ (dAC-F ≤ dIF).

This condition can be rewritten as

d

d

d

d
AC M

FM

AC F

IF

- -≥






 ∩ ≤







1 1 .

In effect, the two ratios define two circles in the geography of the approach.  The mode initial

approach can be inferred when the airplane is “outside” one of the circles and “inside” the other

circle.  Figure 44 illustrates the ratios defining initial approach.
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d
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Figure 44.  Distance ratios for inferring initial approach.

Fuzzy membership functions can now be defined on the domains of these ratios.  For

example, two fuzzy membership functions would be required for the rule of Figure 44.  One would
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be an “open-right” membership function for the > 1 ratio.  The other would be an “open-left”

membership function for the < 1 ratio.  The fuzzy membership functions provide a smooth

transition between modes for what would otherwise be hard-decision rules.

To summarize, the distance rules listed in Trang’s thesis can be formulated using the

distance ratios of Table 6.  For the case where the IAF and the FAF are collocated, Trang proposed

using dIF = 10 NM.  In effect, these ratios define the geographical regions illustrated in Figure 45.

These regions can be combined to infer initial approach, final approach, and landing, as shown in

Figure 46.  Finally, the fuzzy membership functions of Figure 47 smooth the transitions between

modes.

Table 6.

Distance ratios used in upgraded FMI.

Ratio Name Ratio
distance ratio #1 d

d
A F

IF

C-

distance ratio #2 d

d
AC F

FM

-

distance ratio #3 d

d
A M

FM

C-

distance ratio #4 d

d
A M

MA

C-
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Figure 45.  Plot of distance ratios used in upgraded FMI.
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Figure 46.  Fuzzy regions defined by distance ratios in upgraded FMI.
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Figure 47.  Fuzzy membership functions defined for the distance ratios.

The author has confirmed the usefulness of the distance rules originally proposed by Trang.

Figure 48 is a plot of an EFS simulated approach into the Waco’s TSTC airport.  The flight modes

shown were inferred based solely on the fuzzy rule base of Figure 47.  Based on this and similar

results, distance rules have been incorporated into the upgraded FMI.
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Figure 48.  Flight mode interpretation of approach using distance ratios.

Summary of FMI Upgrade

The base-line Flight Mode Interpreter provided a glimpse of the usefulness of an avionics

system which maintains a qualitative assessment of the current flight procedure.  However, it also

revealed the challenge of the flight mode interpretation problem.  Two modifications and two

augmentations to the FMI have improved performance:  a modified method for certainty

calculations when anomalies are detected, a new approach to the design of the fuzzy membership

functions, flight mode decision filtering, and the inclusion of distance inputs.  The membership

functions for the upgraded FMI are shown in Table 7.  The next section presents results of a Flight

Mode Interpreter based on the author’s invention:  hypertrapezoidal fuzzy membership functions.
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Table 7.

Fuzzy membership functions for the FMI upgrade.

N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A

50

80

60

80

70

10

55

45

10 95

20 90

-15 15

-10 10

-20 20

-15 15

-20 20

-15 15

-15 15

-10 10

-10 10

-5 5

75 125

90 120

10 115

80 100

-5 5

0

taxi takeoff climbout cruise initapp finalapp landing

power
[%]

roll
[degrees]

airspeed
[knots]

altitude
[feet]

rate of
climb
[fpm]

55

45

20

30

5 90

15 80

-10 10

-5 5

-3 3

-2 2

10 125

70 115

85 150

100 140

120

125

95 150

100 140

15

10

200

50

100

200

600

1500

500 2500

1000          2000

100 1500

200          1000

200

100

-5

0

100

500

-700 700

300         300

-2000 750

-1500          500

-2000 200

-1000          100

-500 300

-300          100

N/A N/A N/A N/A N/A N/A

d

d
A F

IF

C-

d

d
AC F

FM

-

d

d
A M

FM

C-

d

d
A M

MA

C-

1.1

0.9

1.1

0.9

0.9

1.1

0.9

1.1

1.1

0.9

1.1

0.9

MULTIDIMENSIONAL FMI RESULTS

The development of hypertrapezoidal fuzzy membership functions (HFMFs) introduced in

Chapter III, was motivated by the flight mode interpretation problem.  The one-dimensional baseline

flight mode interpreter uses rule base composition to model the flight modes.  That is,  N one-
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dimensional functions are multiplied together on the Cartesian product space formed from the N

data variables.  For a two-dimensional function, composed from two one-dimensional functions, the

fuzzy set’s footprint in the plane is rectangular.  In the Bayes isomorphism, this corresponds to

combining two probability functions as though the variables were independent, and hence

uncorrelated.  The problem is that for aircraft flight modes, that is a very unrealistic assumption.

For example, airspeed and altitude are indeed correlated and the resulting subset shapes are

anything but hypercubes.

HFMF Examples

Examples of hypertrapezoidal fuzzy membership functions designed for the ASTRA Flight

Mode Interpreter are shown in Figure 49 through Figure 52.  The example HFMFs are three-

dimensional fuzzy sets defined in the state space of altitude, indicated airspeed, and climb rate.  The

HFMFs partition the state space into operational flight modes.  The flight modes modeled in this

example are takeoff, climbout, cruise, initapp (initial approach), finalapp (final approach), and

landing.

Unfortunately, fuzzy sets defined on three dimensions can not be illustrated on paper since

the degree of membership, µ(x), must be plotted on the third axis of a three-dimensional plot.

Therefore, only two inputs can be plotted at a time.  In the following examples, the HFMFs are

projected onto the axes of indicated airspeed (IAS) and climb rate (ROC).  The third input, altitude

above ground, is varied from 500 feet in Figure 49 to 4500 feet in Figure 52.  Imagine that the

aircraft has just taken off in Figure 49, and is gaining altitude in Figure 50 through Figure 52.



69

Notice in Figure 49 that at a lower altitude, given a positive rate of climb, the flight modes

takeoff and climbout fill the state space.  Similarly, a negative rate of climb would indicate that the

current flight mode could be characterized by either finalapp or landing, depending on the indicated

airspeed.
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Figure 49.  HFMFs for an altitude of 500 feet above ground.

As the altitude increases (see Figure 50), the flight modes landing and takeoff disappear

from the state space and are replaced by climbout, initapp, and finalapp.
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Figure 50.  HFMFs for an altitude of 1500 feet above ground.
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Figure 51 is a plot of the sample HFMFs at an altitude of 3000 feet.  Notice that as the rate

of climb approaches zero and as the airspeed increases, the inferred mode becomes cruise.
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Figure 51.  HFMFs for an altitude of 3000 feet above ground.

Figure 52 shows that as the altitude increases (in this case to 4500 feet), the fuzzy set

modeling cruise expands to include more of the state space.
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Figure 52.  HFMFs for an altitude of 4500 feet above ground.

HFMFs are a powerful, yet simple mechanism for partitioning a state space into fuzzy

regions.  An important point to draw from Figure 49 through Figure 52 is that one set of prototype

points can be used to build multidimensional fuzzy sets which model correlated regions in state

space.  These plots, and the design that went into them, were accomplished with the author’s HFMF

MATLAB  Toolbox, which is documented in Appendix C.  The prototype points used for this
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sample partitioning of a three-dimensional state space are shown in Table 8.  These prototype points

were derived using training data from 26 test flights by three different pilots.

Figure 53 is a flight mode plot of an EFS test flight using the hypertrapezoidal FMI and the

prototype points of Table 8.  Notice that this sample run of the FMI uses only three inputs.

Because only three inputs were used, the hypertrapezoidal FMI was especially susceptible to noise

in the rate of climb input.  The one-dimensional counterpart currently uses nine inputs.  With nine

inputs driving the fuzzy inference, the one-dimensional FMI is less susceptible to noise.

Consequently, the rate of climb generated by the EFS model required filtering to remove

rapid fluctuations.  Such filtering of the EFS raw data is justified by the fact that a standard cockpit

mounted vertical speed indicator (VSI) includes a low-pass filter with a time delay of six to nine

seconds [1].  Therefore, the example shows that given properly filtered inputs, flight mode

interpretation can be accomplished with hypertrapezoidal fuzzy membership functions and only

three variables.

Table 8.

Prototype points for example HFMFs.

airspeed
[knots]

altitude
[feet]

rate of climb
[fpm]

takeoff 93 85 685
climbout 119

132
772

2111
1485
1285

cruise 145
145

2675
2675

-30
30

initapp 130
120

2360
1870

-648
-766

finalapp 105
100

950
526

-1037
-905

landing 70 43 -324
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Figure 53.  Performance of three input HFMF-based Flight Mode Interpreter.

Summary of Hypertrapezoidal FMI

Hypertrapezoidal fuzzy membership functions are an advancement in the state of the art for

fuzzy systems.  Motivated by the flight mode interpretation problem, HFMFs are a fuzzy

partitioning of a state space using relatively few parameters.  The plots in this section show the

potential that HFMFs provide for multidimensional problems.  The implementation of the

hypertrapezoidal FMI and the prototype points of Table 8 were achieved using some preliminary

efforts at automatic training.  The next chapter suggests that the real potential of HFMFs lies in the

automatic training made possible by the unique manner in which they are specified.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This chapter begins with a summary of the innovations presented in this dissertation.  The

innovations include both theoretical developments and practical applications.  But innovative work

seldom answers all the questions, or addresses all the challenges.  The section titled

“Recommendations for Future Work” lists some of the unanswered questions and a few of the

unmet challenges.  This chapter should be more than the closing of a dissertation.  It could be the

prelude to a few yet unwritten.

INNOVATIONS

This dissertation contains several important innovations related to dimensionality in fuzzy

systems.  These innovations are motivated by real-world challenges, guided by time-honored

scientific principles, and proven through practical application.

Fuzzy Logic – A Bayesian Science

The author showed that fuzzy logic can be formulated using first principles of Bayesian

probability.  While not discounting the contribution mainstream fuzzy logic theorists have made to

the field of engineering, an understanding of the isomorphism that exists between fuzzy logic and

Bayesian decision theory helps focus theoretical development.  Specifically, the interpretation of

degrees of membership as conditional probabilities led to a system for fuzzy logic which is

consistent with “traditional” approaches to classification, estimation, detection and control.

Uncertainty in Fuzzy Systems

The author also addressed the issue of uncertainty in fuzzy systems.  How does one deal

with anomalous inputs to a system like the ASTRA Flight Mode Interpreter?  The author explained

the effect of various forms of inference, including probabilistic intersection, probabilistic union,

anomaly threshold, and normalized sum.  Product inference is consistent with a Bayesian approach,

but fails to accommodate anomalous inputs.  Product inference can be used with a threshold for

anomalous inputs, but this approach introduces a non-monotonic characteristic to the inference.

Normalized sum is the preferred method for inference when anomalous inputs are a concern.
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Hypertrapezoidal Fuzzy Membership Functions

The most exciting innovation presented in this dissertation is the hypertrapezoidal fuzzy

membership function.  HFMFs are a mechanism for specifying N-dimensional fuzzy membership

functions with relatively few parameters.  Currently, the state-of-the-practice in fuzzy engineering is

rule-base composition of one-dimensional membership functions.  HFMFs address the issue of

correlation between system variables, and the exponential growth in the rule-base.  The author

expects HFMFs to gain wide acceptability as results of their application continue to be publicized.

Fuzzy System Architectures

The author explained that requirements for many complex fuzzy systems of high

dimensionality can be met by partitioning the task responsibility into more manageable sub-

components.  Nearly all fuzzy system architectures can be categorized as multilevel or parallel.

Multilevel fuzzy systems include hierarchical and set-composition models.  Parallel fuzzy systems

are either competitive or cooperative.  Modularity in architecture, coupled with modularity in

interface, has proven to be a valuable asset to the ASTRA development team.

Flight Mode Interpretation

The real-world challenge driving theoretical innovation has also served as the practical

application.  Flight mode interpretation is an innovation in its own right.  Yet to be implemented in

any commercial avionics system, automatic determination of flight procedure is an important

capability when enhancing situational awareness in the cockpit.  The ASTRA Flight Mode

Interpreter is capable of reliably configuring pilot displays with timely information.  It also enables

procedure-specific advice.

RECOMMENDATIONS FOR FUTURE WORK

No dissertation would be complete without a discussion of the possibility of follow-up

research.  In fact, several of the topics in this dissertation address “Future Work” suggested by

former graduates.  As mentioned in a previous chapter, the most promising area of future work is

automatic training of hypertrapezoidal fuzzy membership functions.

Additional Flight Modes

In the Fall of 1997, flight tests are to be conducted on the current ASTRA system.  It is

hoped that these tests will validate the usefulness of the Flight Mode Interpreter in enhancing the
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situational awareness of the pilot.  The next phase of ASTRA must incorporate additional FMI flight

modes.  A holding procedure, for example, is an excellent opportunity for cockpit automation to

assist the pilot.  Identifying holding, independent of pilot input, may not be useful with the current

FMI inputs.  It may not be useful because the pilot would be well into the execution of the

procedure before the FMI could identify a holding mode.  A holding mode would require either

additional inputs to the FMI, or a closer coupling of the FMI and Navigation module.

Non-nominal Flight Mode Interpretation

The current Flight Mode Interpreter only considers nominal flight modes – taxi, takeoff,

climbout, cruise, initial approach, final approach, and landing.  As ASTRA matures, there will be

a need to identify non-nominal flight modes.  Stall, for example, would be an excellent non-nominal

flight mode to identify.  Perhaps two parallel Flight Mode Interpreters could be used to divide the

responsibility of identifying nominal and non-nominal conditions.  The nominal FMI would continue

to drive the head-up and head-down displays.  The non-nominal FMI would continuously monitor

for potentially hazardous situations.

Expanded Situational Awareness

Part of the responsibility of a non-nominal FMI could be to monitor for hazardous weather

patterns or unexpected air traffic conditions.  Such enhanced monitoring will be possible through

proposed upgrades to the national aviation system.  These upgrades include a significant number of

ground-to-air and even air-to-air data links.  The ASTRA program is partly motivated by the large

amount of information available to the pilot.  The amount of available information is about to grow

to an unprecedented level.  Texas A&M and the ASTRA program are in an excellent position to find

ways of fusing that information into enhanced situational awareness, and reduce information

overload for the pilot.

HFMF Systems

There are several unanswered questions regarding the application of hypertrapezoidal fuzzy

membership functions.  One area which was not explored during the project work of this

dissertation is the use of one-dimensional and multidimensional membership functions in a single

fuzzy system.  How does one build a rule-base for both standard membership functions and

hypertrapezoidal membership functions?  Can HFMFs be used as output sets of a fuzzy system?

How are HFMFs “defuzzified”?  HFMFs will continue to be a rewarding research area.
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Analog HFMF Device

Hypertrapezoidal fuzzy membership functions are computationally intensive.  There are

many potential applications for an analog circuit which could “calculate” HFMFs.  The author

believes that the HFMF equations could be implemented with comparators and amplifiers.  A chip

with the capability to classify signals into fuzzy sets could be used in speech recognition, adaptive

control, or similar embedded systems requiring pattern recognition capability.  A reliable training

procedure for HFMFs would further enhance the usefulness of such a chip.

HFMF Training, Statistical

Automatic training of hypertrapezoidal fuzzy membership functions has the most potential

for rewarding research.  Specified with relatively few parameters, HFMFs will be an excellent

mechanism for fuzzy systems which require learning – both off-line training and on-line adaptation.

The most obvious approach for training HFMFs would be to interpret the prototype points as

statistical means.  The problem with this straight-forward approach is illustrated in Figure 54.

statistical mean

hypertrapezoidal boundary

class 2class 1

misclassified
samples

Figure 54.  Using statistical means as prototype points.

Using the mean as the prototype point can introduce a bias in the HFMF decision boundary.

One approach to correcting this bias would be to adjust the prototype points based on the statistical

variance of the two classes.  Another option would be to project the prototype points an equal

distance away from the overlap.  In preliminary attempts at HFMF training, the author used a kth-

nearest neighbor algorithm to estimate the mean of the overlap.  Prototype points were then placed

equidistant from the overlap, in the direction of their respective means.  Such statistical-based

placement of prototype points could serve as the basis of HFMF training.
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HFMF Training, Neural

Neural networks are another potential method for automating the design of HFMFs.  In

particular, the author suggests a study of adaptive resonance theory networks [4].  ART networks

may not be directly applicable to HFMF training, because they are used to cluster training data

which does not already include pre-defined class associations.  However, they are based on

Euclidean distance classification, and include a mechanism for creating additional neural nodes as

needed.  The vigilance parameter of ART networks may provide insight into how to add prototype

points to an HFMF system.  Such a study could be performed and compared with a neural network

version of the FMI, as implemented by Nguyen [26].  A neuro-fuzzy system is another candidate for

implementing automatic training of an FMI [20].

HFMF Training, Genetic

Genetic algorithms is a set of techniques for searching a state space for an optimal solution.

Harral, in his development of the base-line Flight Mode Interpreter, explored the use of genetic

algorithms for tuning one-dimensional fuzzy membership functions [17].  To extend Harral’s work,

a researcher should not allow the genetic algorithm too much freedom in the design of the

membership functions.  HFMF prototype points could be directly encoded into genetic

chromosomes.  The genetic algorithm would repeatedly adjust the prototype points, attempting to

correctly classify as many of the training samples as possible.

In Closing

These are a few of the possible directions for future research.  But it is the author’s

intention to provide more than a starting point for future research.  Hopefully, the ideas and

experiences outlined in this dissertation will benefit engineering practitioners who are building

systems today.
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APPENDIX A

PROOFS AND DERIVATIONS

CONTROL DENSITY EQUATION

The control density of equation (12), page 19, can be found from first principle as follows.
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Because events Ei are defined to be mutually exclusive, the probability of the intersection of all the

events is zero.
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Now, to find the conditional density,
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DERIVATION OF HFMF EQUATIONS

Chapter III introduced hypertrapezoidal fuzzy membership functions (HFMF).  The

derivation of HFMFs begins with two prototype points in a two-dimensional plane, as shown in

Figure 55.  The prototype points are the defining parameters for two fuzzy sets in state space.  For

a point, x, in the state space, the degree of membership µi(x) depends on the Euclidean distance

between x and each of the prototype points.  “Near” prototype point λi, µi(x) = 1 and µj(x) = 0.

“Between” λi and λj, x is in the fuzzy region where the two fuzzy sets overlap.  According to the

Bayesian interpretation of fuzzy logic, µi(x) + µj(x) = 1.

λi

λj

fuzzy set i

fuzzy set j

fuzzy overlap

νij

{α

{αµi(x) = 1
µj(x) = 0

µi(x) = 0
µj(x) = 1

µ
i (x) > 0

µ
j (x) > 0

Figure 55.  Partitioning a two-dimensional plane with two prototype points.

The width of the fuzzy overlap is set by the system designer with the crispness factor, σ.

The author chose to define the crispness factor as
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σ α= 2

vij

.

Therefore, the distance from the prototype points to the region of overlap is

α σ= ⋅
vij

2
. (37)

Notice that the range of σ is [0, 1].  For σ = 0, the region of fuzzy overlap extends from prototype

point to prototype point.  For σ = 1, there is no fuzzy overlap and the fuzzy sets reduce to a

minimum distance classifier.

Now we must determine if an arbitrary point, x, lies in the unity range of a fuzzy set, or

within the fuzzy overlap.  Consider the case of µi(x) = 1 and x lies on the boundary of the fuzzy

region, as shown in Figure 56.

λi

λj

fuzzy overlap

νij

{

α

α

x
{νix

νjx

β

Figure 56.  A point, x, on the boundary of the fuzzy overlap.

The two right triangles satisfy the Pythagorean theorem.

( )β α β α2 2 2 2 2 2
= − = − −v v vix jx ij

Combining the two equations yields
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By substituting equation (37) and rearranging the terms, we discover the condition for which  x lies

on the boundary.

( )

v v v v

v v v

v v

v

ix jx ij ij

ix jx ij

ix jx

ij

2 2 2 2

2 2 2

2 2

2

1

1

= − +

= + − +

−
= −

σ

σ

σ

It is convenient to define the left side of the previous equation as a new function, ρi|j(x).  Notice that

ρi|j(x) is a measure of the normalized, relative distance from x to the two prototype points.  When

ρi|j(x) = 0, x is equidistant from the two prototype points.  When ρi|j(x) < 0, x is closer to λi and

when ρi|j(x) > 0, x is closer to λj.  Finally, notice that ρi|j(x) = -ρj|i(x).

By considering the values of ρi|j(x) in the three regions of the state space, the following

conditions become apparent:

( )
( )
( )

( ) ( )
( ) ( )

( ) ( ) ( )

For 

For 

For overlap region,  0 < 1:

 

µ
µ
µ

ρ σ
ρ σ
σ ρ σ

i

i

i

i j

i j

i j

x

x

x

x

x

x

=
=

<

≤ −
≥ −

− < < −

1

0

1

1

1 1

:

:
|

|

|

For the first two conditions, the degree of membership is either unity or zero.  The next question is,

“What is the degree of membership of an arbitrary point in the fuzzy region?”
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Figure 57.  Degree of membership of point in fuzzy region.

First, we should introduce a new notation for µi(x).  µi|j(x) is the degree of membership in

fuzzy set i, given that fuzzy set j is the only other set in the partition.  To this point we have been

working with only two fuzzy sets and two prototype points.  However, when more than two sets

partition a space, the degrees of membership are calculated two at a time.  With reference to Figure

57, for the two fuzzy sets i and j, the degree of membership µi|j(x) can be calculated according to the

following equation:

( )µi j
j

i j

x
a

a a
=

+

Notice that this definition causes the two fuzzy sets to resemble overlapping trapezoids in the fuzzy

region, as shown in Figure 58.

{

λi

λj

{α

α

Figure 58.  Two overlapping fuzzy sets defined on two dimensions.
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Continuing with the development of µi|j(x), and referencing Figure 57, yields the following:
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Notice that µj|i(x) = 1 - µi|j(x):
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Therefore, the degree of membership, of a point x, in two fuzzy sets defined by λi and λj, is given by

the following:
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;

;

; otherwise

Notice that these equations are general for N dimensions.

The final step in the derivation of hypertrapezoidal fuzzy membership functions is the

determination of µi(x) when there exist more than two fuzzy sets in the fuzzy partition.  µi(x) could

be calculated by multiplying together the µi|j(x) for all j ≠ i (i.e., the numerator of equation (38)).

However, in order to satisfy the Bayesian requirement that the degrees of membership sum to one,

the calculation of µi(x) requires an additional normalizing sum (i.e., the denominator of equation

(38)).  Therefore, the degree of membership of a point in state space, x, in HFMF i, is
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. (38)

BAYESIAN INTERPRETATION OF DECISION CONFIDENCE

The FMI’s decision confidence of page 55, equation (35), was first introduced by

Economides [9].  He developed an excellent justification for its use, which concludes, “Thus, the

Bayes rationale for the ad hoc confidence function is that it is the Bayes conditional difference

between the probabilities of a correct and an incorrect decision, scaled by the probability of a

correct decision.”  That is,

Confidence C C
C C

C
( , )1 2

1 2

1

= −

is equivalent to

( ) ( ) ( )
( )Confidence x

P C x P E x

P C x
=

−
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where P(C|x) and P(E|x) are the conditional probabilities of making the correct decision and an

incorrect decision, respectively.  The two values are also the highest and second highest mode

certainties, C1 and C2.

In addition to Economides’ conclusion concerning a Bayesian foundation for the decision

confidence, it can also be shown that the decision confidence is related to the odds likelihood of

making the incorrect decision.  The odds of an event [38] is defined as

( ) ( )
( )O X

P X

P X
=

−1
.

Using Economides’ basic approach, the decision confidence can be expressed as

( ) ( ) ( )
( )

( )
( )

Confidence x
P C x P E x

P C x

P E x

P C x

=
−

= −1

.

Assuming that P(C|x) + P(E|x) = 1, then the confidence can be expressed as

( ) ( )
( )

( )

Confidence x
P E x

P E x

O E x

= −
−

= −

1
1

1

|

.

Therefore, the FMI’s decision confidence is related to the odds likelihood of making an incorrect

decision.
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APPENDIX B

FMI MATLAB TOOLBOX

BACKGROUND

The FMI MATLAB Toolbox is a set of MATLAB commands for designing and

analyzing the one-dimensional ASTRA Flight Mode Interpreter.  The Flight Mode Interpreter is

responsible for partitioning the N-dimensional state space of aircraft operation into “flight modes”.

The flight modes describe some operational or procedural state of the aircraft.  The FMI Toolbox

primarily takes advantage of MATLAB plotting capabilities to help the system designer build a

better Flight Mode Interpreter.  The FMI Toolbox imports recorded data from the Engineering

Flight Simulator of Texas A&M.

REQUIREMENTS

A correctly installed version of MATLAB, of course, is the first requirement for using the

FMI Toolbox.  The FMI Toolbox does not require any additional toolboxes.  It will work with the

Student Edition of MATLAB.  However, the Student Edition of MATLAB is “limited to 8192

elements, with either the number of rows or columns limited to 32” [37].  The recorded data files

from the EFS are 15 columns wide.  Therefore, the Student Edition would be limited to 546

samples.  For a 5 Hz sampling rate, this would equate to just under two minutes worth of data.

To use the FMI toolbox, the toolbox files can be installed in any directory.  At the

MATLAB command line, change to the directory containing the files.  For example,

» cd \users\wally\matlab\fmi
» dir

.           idents.m    jeff08.txt  mbfjeff.m   plotmode.m  tay06.txt

..          jeff01.txt  jeff09.txt  mbfvance.m  readdata.m  tay07.txt
certain.m   jeff02.txt  jeff10.txt  plotalar.m  readme.txt  vance01.txt
compmbfs.m  jeff03.txt  jeff11.txt  plotcert.m  tay01.txt   ward01.txt
drew01.txt  jeff04.txt  jeff12.txt  plotdata.m  tay02.txt   ward02.txt
fdm2mats.m  jeff05.txt  jeff13.txt  plotflt.m   tay03.txt   ward03.txt
fmi.m       jeff06.txt  makembfs.m  plotmbf.m   tay04.txt   woo02.txt
fmisim.m    jeff07.txt  mbf2mats.m  plotmbfs.m  tay05.txt

The m-files are MATLAB functions.  The txt-files are flight data files recorded in the Engineering

Flight Simulator.  readme.txt  describes the recorded flight data files.
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COMMANDS

Help

The functions available in the FMI Toolbox can be listed by typing fmi at the MATLAB

command prompt:

» fmi

  FMI MATLAB Development Toolbox
  Version 1.0, by Wallace Kelly

  THE MEMBERSHIP FUNCTIONS ---------
  plotmbf   plot the membership function for one input, one mode
  plotmbfs  plot the membership functions for one input, all modes
  compmbfs  compare the mbfs for an input on the same plot
  plotmode  plot the membership functions for one mode, all inputs

  makembfs  create a membership function data matrix
  mbf2mats  get information from a membership function data matrix

  THE FLIGHT DATA ------------------
  plotdata  plots the input data and the transitions to each mode

  readdata  load flight data into a flight data matrix
  fdm2mats  get specific information from a flight data matrix

  FLIGHT MODE INTERPRETATION -------
  plotflt   show graphically the inferred and actual flight modes
  plotcert  plot the certainty level and the number of alarms

  fmisim    determine the flight mode from data
  certain   calculate the certainties for a given input

  MISCELLANEOUS --------------------
  idents    defines identifiers for ASTRA modes and inputs

»

Help with individual functions can be viewed by typing help function-name at the command

line:

» help idents

  IDENTS
  Defines convenient identifiers for FMI modes and variables
  TAXI, TAKEOFF, CLIMBOUT, CRUISE, INITAPP, FINALAPP, LANDING
  THRUST, ALPHA, ROLL, GEAR, FLAPS, IAS, ALT, ROC

  Use FMI functions like, plotmode('mbfbest', CLIMBOUT);
              instead of, plotmode('mbfbest', 3);

»
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The idents function is a batch file which defines constants for the flight mode and input numbers.

Instead of having to remember which flight mode number corresponds to climbout, the user can use

CLIMBOUT, as shown above.

Membership Function Files

A Flight Mode Interpreter is described in a MATLAB batch file.  Variables defined in a

batch file have the workspace as their scope, unlike variables defined in function files.  The batch

file should first define the names of the FMI inputs and the names of the flight modes.  For example,

mbfjeff.m begins with the following lines:

inlabels  = str2mat(’thrust’, ’alpha’, ’roll’, ’gear’,
’flaps’, ’airspeed’, ’altitude’, ’climbrate’);

mbflabels = str2mat(’taxi’, ’takeoff’, ’climbout’, ’cruise’,
’initapp’, ’finalapp’, ’landing’);

These lines define eight inputs and seven flight modes.  Each flight mode is then defined by an 8-by-

4 matrix.  Each row of the matrix contains the abcd parameters of a trapezoid.  For example,

mbfjeff.m defines the flight mode taxi with the following matrix:

taxi = [
[-inf -inf 45 55];
[-inf -inf inf inf];
[-3 -2 2 3];
[-inf -inf inf inf];
[-inf -inf inf inf];
[-inf -inf 10 70];
[-inf -inf 10 15];
[-5 0 0 5]; ];

This matrix defines the membership function for thrust (the first row) during taxi mode to be an

open-left trapezoid, which tapers off between 45 and 55 percent.  The second row of the taxi matrix

indicates that the second input, alpha, should not be used when inferring taxi.  Finally, the

membership function should include a matrix defining mode memory.  The mode memory matrix in

mbfjeff is

memmat = [
%taxi

1 1 0 0 0 0 0;
%takeoff

1 1 1 0 0 0 0;
%climbout

0 0 1 1 0 0 0;
%cruise

0 0 1 1 1 0 0;
%initapp

0 0 0 0 1 1 0;
%finalapp
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0 0 0 0 0 1 1;
%landing

1 1 0 0 0 0 1; ];

Each row of the memory matrix corresponds to a flight mode.  Each element in a row corresponds

to a flight mode that might follow the current mode.  For example, the second row would indicate

that takeoff could be followed by taxi, takeoff, or climbout.

Plotting Membership Functions

The FMI toolbox includes four functions for plotting fuzzy membership functions –

plotmbf, plotmbfs, compmbfs, and plotmode.  The first, plotmbf, plots the membership

function for a single input, and a single mode.  For example,

» help plotmbf

  function plotmbf(mbfname, input, mode, mn, mx)

  Plot the membership function
  found in the file named mbfname
  for the input number, input
  and for mode number, mode
  (optional) specify the min and max points to plot

  Example:  plotmbf('mbfjeff', 7, 3)

» idents
» plotmbf('mbfjeff', ROC, INITAPP)

-2000 -1000 0 1000

0

0.2

0.4

0.6

0.8

1

climbrate for initapp

»

plotmbfs plots the membership functions for a single input, and for all the modes.  The plots are

tiled, as shown:
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» help plotmbfs

  function plotmbfs(mbfname, input, mn, mx)

  Plot the membership functions
  found in the file named mbfname
  for the input number, input
  (optional) specify the min and max points to plot

  This function tiles the plots for all the flight modes
  See compmbfs to compare the mbfs on the same plot

» plotmbfs('mbfjeff', ROC)
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»

To compare the membership functions for a single input and various modes on the same axes, use

compmbfs .

» clg
» help compmbfs

  function compmbfs(mbfname, input, modes, mn, mx)

  Plot the membership functions



94

  found in the file named mbfname
  for the input number, input
  (optional) specify that only certain modes be plotted
             for example: modes = [3; 4; 5]
  (optional) specify the min and max points to plot

  This function plots the modes on the same axes
  See plotmbfs to plot the mbfs in a tile format

  Note, the plots are scaled slightly to improve visibility
  in the overlap regions

» compmbfs('mbfjeff', ALTITUDE, [INITAPP; FINALAPP; LANDING])

initapp
finalapp
landing

0 1000 2000 3000 4000

0

0.5

1

1.5

2
altitude

»

Finally, plotmode  allows the user to view the membership functions for all the inputs of one

mode.

» help plotmode

  function plotmode(mbfname, modenum)

  Plot the membership functions
  found in the file named mbfname
  for the mode number modenum
  for all the inputs.

  This function tiles the plots.
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» plotmode('mbfjeff', LANDING)
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»

Plotting Flight Data

The FMI toolbox also includes the capability to plot flight data from recorded EFS data.

plotdata  allows the user to plot all the stored data, windows of data, and single variables.

Vertical dotted lines on the plot show where the pilot indicated a change in flight mode.  Vertical

dashed lines indicate the FMI’s inference.

» help plotdata

  function plotdata(fname)
  function plotdata(fname, inputnum)
  function plotdata(fname, start, stop)
  function plotdata(fname, start, stop, inputnum)

  function plotdata(fname, mbfname)
  function plotdata(fname, mbfname, inputnum)
  function plotdata(fname, mbfname, start, stop)
  function plotdata(fname, mbfname, start, stop, inputnum)
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  Plots the input data and the pilot specified flight modes

  (optional) If inputnum is included, only one variable is plotted
  (optional) Include start and stop to view windows of data
  (optional) Include the file name mbfname to have the inferred modes
    also diplayed using the membership functions found in mbfname

» plotdata('jeff05.txt')
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» plotdata('jeff05.txt', ALTITUDE)
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» plotdata('jeff05.txt', 'mbfjeff', ALTITUDE)
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» plotdata('jeff05.txt', 'mbfjeff', 200, 300, ALTITUDE)

200 220 240 260 280 300
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100

150

200

altitude

77

»

Notice that the last plot shows the Flight Mode Interpreter switched to landing around 140

feet, while the pilot waited until he was a little closer to the ground.  It also shows that there is no

nervousness in the transition.

Plotting Flights

One of the most useful capabilities of the FMI Toolbox is the plotflt command.

plotflt generates a plot of the pilot specified and the FMI inferred flight mode.

» help plotflt

  function plotflt(fname, mbfname, start, stop)

  Plots the inferred mode and the pilot entered modes
  using the data in fname,
  and the membership functions stored in mbfile.
  (optional) plot the window from start to stop.
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» plotflt('jeff13.txt', 'mbfjeff')
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climbrate

»

The solid line is the pilot-specified flight mode and the dashed line is the flight mode

inferred by the FMI.  This example shows two problems in the flight mode interpretation.  First the

FMI incorrectly infers initial approach during the transition from climbout to cruise.  Then, during

the cruise phase, the FMI momentarily switches to climbout.  In addition to the flight mode plot,

plotflt  helps the designer understand which inputs caused the FMI to make such errors.  The plot

labeled “Anomalies” shows which inputs did not match the pilot specified flight mode.  For

example, in the transition from climbout to cruise, the roll angle and climbrate seem to have

contributed to the incorrect inference.

The FMI Toolbox has been a valuable tool for tuning the one-dimensional ASTRA Flight

Mode Interpreter.  However, the MATLAB implementation of the FMI is not identical to the

current C++ implementation.  The ASTRA system includes a Navigation module which makes

distance calculations based on a flight plan.  These distances can not be included in the MATLAB

FMI until a Navigation module is implemented in MATLAB.
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APPENDIX C

HFMF MATLAB TOOLBOX

BACKGROUND

The HFMF MATLAB Toolbox is a set of MATLAB functions for designing and

analyzing hypertrapezoidal fuzzy membership functions (HFMF).  HFMFs are a convenient method

of specifying multidimensional fuzzy relationships.  An HFMF system partitions a state space into

fuzzy sets using relatively few parameters.  This toolbox takes advantage of the plotting capabilities

of MATLAB to help the HFMF designer visualize the membership functions in an HFMF system.

The described toolbox has assisted in the design of HFMFs for flight mode interpretation in the

ASTRA system.

REQUIREMENTS

A correctly installed version of MATLAB, of course, is the first requirement for using the

HFMF Toolbox.  The HFMF Toolbox does not require any additional toolboxes.  It will work with

the Student Edition of MATLAB.  However, the Student Edition of MATLAB is “limited to 8192

elements, with either the number of rows or columns limited to 32” [37].  This limitation will affect

the size of any data used to test the HFMF system, but should not limit the HFMF calculations.

To use the HFMF toolbox, the toolbox files can be installed in any directory.  At the

MATLAB command line, change to the directory containing the files.  For example,

» cd \users\wally\matlab\hfmf
» dir

.          dom.m      muij.m     ndmake.m   plot2d.m   sample1.m

..         gapats.m   ndadd.m    nearpnt.m  ppndmat.m  sample2.m
combine.m  hfmf.m     ndinfo.m   plot1d.m   rhoij.m    sample3.m

»

COMMANDS

Help

The functions available in the HFMF Toolbox can be listed by typing hfmf  at the

MATLAB command prompt:

» help hfmf
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  HFMF MATLAB Toolbox
  Version 1.0, by Wallace Kelly

  THE MEMBERSHIP FUNCTIONS ---------
  ndmake   make a new hypertrapezoidal matrix
  ndadd    add a lambda value to a hypertrapezoidal matrix
  ndinfo   get and set information in a hypertrapezoidal matrix
  ppndmat  pretty print the information in a hypertrapezoidal matrix

  PLOTTING FUNCTIONS ---------------
  plot1d   plots a one-dimensional slice of hypertrapezoidal functions
  plot2d   plots a two-dimensional slice of hypertrapezoidal functions

  FUZZY INFERENCE ------------------
  dom      calculate the degree of membership of a point
  muij     calculate an intermediate value for dom
  rhoij    calculate an intermediate value for muij
  nearpnt  find the nearest lambda point to a given point

»

Help with individual functions can be viewed by typing help function-name at the command

line:

» help nearpnt

  function [npts, dxc] = nearpnt(x, lams)
  Find the nearest point on the vectors connecting
  the hypertrapezoidal lambdas to the point x
  and the distance to that vector lambda

  x has numsamples rows, and numdimensions columns
  lams has numlambdas rows, and numdimensions columnes
  npts has numlambdas rows, and numdimensions columnes
  dxc are the distance to the vector lambda

»

The nearpnt  function finds the closest lambda and the distance to that lambda from a point (or an

array of points), x .  This function actually allows for “vector lambdas”, which are a set of lambdas

all serving as prototype points for a single fuzzy set.

HFMF Matrices

A system of HFMFs is internally represented in the HFMF Toolbox by a matrix.  The

matrix stores the number of dimensions, number of sets, crispness factor, labels, and all the

prototype points.  An HFMF matrix is created with the ndmake command:

» help ndmake

  ndmat = ndmake(N, sigma, name1, name2, ... name8)
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  Make a new N-dimensional hypertrapezoidal matrix
  N is the number of dimensions
  sigma is the crispness factor
  ndmat is the n-dimensional hypertrapezoidal matrix
  the names are optional, and are the labels of the dimensions

  Example:  hfmf = ndmake(2, 0.5, ’airspeed’, ’altitude’)

» hfmf = ndmake(3, 0.5, 'airspeed', 'altitude', 'power');
»

To see the information stored in an HFMF matrix, use the ppndmat  command.  The

ppndmat  command “pretty prints” the HFMF information in a convenient format:

» help ppndmat

  ppndmat(ndmat)
  Pretty print the information in the
  hypertrapezoidal membership function

» ppndmat(hfmf)

  Dimensions:  3
        Sets:  0
   Crispness:  0.50
Domain names:    airspeed    altitude       power
»

Information about the HFMF partition is also available through the ndinfo  command.

» help ndinfo

  NDINFO is used to get and set information in an HFMF matrix

  These can modify ndmat
    ndmat = ndinfo(ndmat, 'sets|sigma', value)
    ndmat = ndinfo(ndmat, 'scale', scale)
    ndmat = ndinfo(ndmat, set#, lambda#, lam)

  These just return information
  [N M sigma] = ndinfo(ndmat)
        value = ndinfo(ndmat, 'max|min',    domain#)
         name = ndinfo(ndmat, 'domain',     domain#)
      domain# = ndinfo(ndmat, 'domain',    'name')
         name = ndinfo(ndmat, 'set',        set#)
         set# = ndinfo(ndmat, 'set',       'name')
          lam = ndinfo(ndmat, 'lambda',     set#)
         nlam = ndinfo(ndmat, 'nlambda',    set#)

  Return or change the information stored
  in an n-dimensional hypertrapezoidal matrix

  N is the number of dimensions
  M is the number of sets
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  sigma is the crispness factor

  ndmat is an n-dimensional hypertrapezoidal matrix
  lam are the lambdas that define the ith set
  nlam are the normalized lambdas

  value is the new value to assign to the property
  set is the fuzzy set of interest
  scale is Mx2 matrix of [min, max] pairs for normalizing

» [N M sigma] = ndinfo(hfmf)

N = 3

M = 2

sigma = 0.5000

»

ndinfo  can also be used to set parameters in the HFMF matrix.

» hfmf = ndinfo(hfmf, 'sigma', 0.75); ppndmat(hfmf)

  Dimensions:  3
        Sets:  2
   Crispness:  0.75
Domain names:    airspeed    altitude       power
    InHanger:        0.00        0.00        0.00
       InSky:      100.00     1000.00       60.00
                   150.00     3000.00      100.00
»

Prototype Points

To add prototype points to an HFMF matrix, use the ndadd  command.  Prototype points

are expressed as a row of elements matching the inputs specified in the ndmake command.

» help ndadd

  ndmat2 = ndadd(ndmat1, lam)
  ndmat2 = ndadd(ndmat1, m, lam)
  Add a lambda value to the n-dimensional hypertrapezoidal matrix
  ndmat1 is the original n-dimensional hypertrapezoidal matrix
  lam is the new lambda value
  m is the set name with which to associate this lambda

» hfmf = ndadd(hfmf, 'InHanger', [0, 0, 0]);
» hfmf = ndadd(hfmf, 'InSky', [100, 1500, 60]);
» ppndmat(hfmf)

  Dimensions:  3
        Sets:  2
   Crispness:  0.50
Domain names:    airspeed    altitude       power
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    InHanger:        0.00        0.00        0.00
       InSky:      100.00     1500.00       60.00
»

Additional lambda points can be added to existing sets to create vector lambdas.

» hfmf = ndadd(hfmf, 'InSky', [150, 3000, 100]);
» ppndmat(hfmf)

  Dimensions:  3
        Sets:  2
   Crispness:  0.50
Domain names:    airspeed    altitude       power
    InHanger:        0.00        0.00        0.00
       InSky:      100.00     1500.00       60.00
                   150.00     3000.00      100.00
»

Calculating Degrees of Membership

The command dom is used to calculate the degrees of membership in the fuzzy sets of an

HFMF partition.  The following example shows how to determine the degrees of membership in

InHanger and InSky for airspeed = 10, altitude = 0, and power = 20.  It shows that for these inputs,

the degree of membership in InHanger is 0.9272.

» help dom

  function mu = dom(x, ndmat, product)

  Returns the degree of membership of points x
  using the hypertrapezoids defined in ndmat

  x is numsamples by dimensions
  mu is numsamples by dimensions
  if product is included, product inference is used

» mu = dom([10 0 20], hfmf, 1)

mu = 0.9272    0.0728

»

dom can also determine the degrees of membership for an entire set of samples.  The following

example shows how to determine the degrees of membership as airspeed, altitude, and power

increase:

» x = [(0:15:150)', (0:300:3000)', (0:10:100)']

x =        0           0           0
          15         300          10
          30         600          20
          45         900          30
          60        1200          40
          75        1500          50
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          90        1800          60
         105        2100          70
         120        2400          80
         135        2700          90
         150        3000         100

» mu = dom(x, hfmf, 1)

mu = 1.0000         0
     0.9337    0.0663
     0.7006    0.2994
     0.4676    0.5324
     0.2346    0.7654
     0.0172    0.9828
          0    1.0000
          0    1.0000
          0    1.0000
          0    1.0000
          0    1.0000

»

Notice that as the variables increase, the degree of membership decreases for InHanger and

increases for InSky.  Also notice that the degrees of membership sum to unity, a design requirement

of the HFMF derivation.

Plotting HFMFs

There are two functions for plotting hypertrapezoidal fuzzy membership functions –

plot1d and plot2d.  plot1d plots the degrees of membership for the fuzzy sets as a single

variables is varied.  Consequently, plot1d asks the user for values for the other variables.

» help plot1d

  function plot1d( ndmat, i, numpoints, product )

  Plot a one-dimensional slice of the hypertrapezoidal
  membership function described in ndmat.

  Plots the ith dimension.
  If product is included, product inference is used.
  i, numpoints, and product are optional.

» plot1d(hfmf, 3)

  Dimensions:  3
        Sets:  2
   Crispness:  0.75
Domain names:    airspeed    altitude       power
    InHanger:        0.00        0.00        0.00
       InSky:      100.00     1000.00       60.00
                   150.00     3000.00      100.00

Enter a value for airspeed [75.000]: 60
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Enter a value for altitude [1500.000]: 0

0 20 40 60 80 100
0

0.5

1

1.5

power

InHanger InSky

»

plot2d  is similar to plot1d, except it allows two variables to be varied on the same plot.

» plot2d(hfmf, 1, 3)

  Dimensions:  3
        Sets:  2
   Crispness:  0.75
Domain names:    airspeed    altitude       power
    InHanger:        0.00        0.00        0.00
       InSky:      100.00     1000.00       60.00
                   150.00     3000.00      100.00

Enter a value for altitude [1500.000]:

0
50

100
150

0

50

100

0

1

2

3

airspeedpower

InHanger

InSky

»
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